OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 19 — Jul. 1, 2011
  • pp: 3240–3245

Measurement of the two-photon absorption cross section by means of femtosecond thermal lensing

Luis Rodriguez and Matteo Chiesa  »View Author Affiliations


Applied Optics, Vol. 50, Issue 19, pp. 3240-3245 (2011)
http://dx.doi.org/10.1364/AO.50.003240


View Full Text Article

Enhanced HTML    Acrobat PDF (502 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a variation of the single-beam thermal lensing experiment to determine the two-photon absorption cross sections of classical fluorophores. The approach is based on comparison of two thermal lensing signals simultaneously induced by a one- and two-photon absorption process from a high- repetition-rate femtosecond laser system. As a consequence of this comparison, a simplified expression independent of the several experimental parameters is obtained. Additionally, because of the low incident power levels required, undesirable optical effects such as Kerr or Raman scattering are avoided. Our experimental results agree well with those recently published for luminescent methods, validating the approach.

© 2011 Optical Society of America

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(190.4870) Nonlinear optics : Photothermal effects
(190.5940) Nonlinear optics : Self-action effects
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: January 25, 2011
Revised Manuscript: May 9, 2011
Manuscript Accepted: May 15, 2011
Published: June 24, 2011

Citation
Luis Rodriguez and Matteo Chiesa, "Measurement of the two-photon absorption cross section by means of femtosecond thermal lensing," Appl. Opt. 50, 3240-3245 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-19-3240

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited