OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 19 — Jul. 1, 2011
  • pp: 3259–3267

Interferometric investigation and simulation of refractive index in glass matrixes containing nanoparticles of varying sizes

Michael Gerard Feeney, Rabia Ince, Mehmet Hikmet Yukselici, and Cagdas Allahverdi  »View Author Affiliations


Applied Optics, Vol. 50, Issue 19, pp. 3259-3267 (2011)
http://dx.doi.org/10.1364/AO.50.003259


View Full Text Article

Enhanced HTML    Acrobat PDF (655 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The relationship between refractive index and nanoparticle radii of cadmium selenide (CdSe) nano particles embedded within glass matrixes was investigated experimentally and by simulations. A homemade automated Michelson interferometer arrangement employing a rotating table and a He–Ne laser source at a wavelength of 632.8 nm determined the refractive index versus nanoparticle radii of embedded cadmium selenide (CdSe) nanoparticles. The refractive index was found to decrease linearly with nanoparticle radius increase. However, one sample showed a step increase in refractive index; on spectroscopic analysis, it was found that its resonant wavelength matched that of the He–Ne source wavelength. The simulations showed that two conditions caused the step increase in refractive index: low plasma frequency and matched sample and source resonances. This simple interferometer setup defines a new method of determining the radii of nanoparticles embedded in substrates and enables refractive index tailoring by modification of exact annealing conditions.

© 2011 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(160.2750) Materials : Glass and other amorphous materials
(160.4760) Materials : Optical properties
(260.2030) Physical optics : Dispersion
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: January 21, 2011
Revised Manuscript: April 12, 2011
Manuscript Accepted: May 6, 2011
Published: June 28, 2011

Citation
Michael Gerard Feeney, Rabia Ince, Mehmet Hikmet Yukselici, and Cagdas Allahverdi, "Interferometric investigation and simulation of refractive index in glass matrixes containing nanoparticles of varying sizes," Appl. Opt. 50, 3259-3267 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-19-3259


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. P. Banfi, V. Degiorgio, and B. Speit, “Neutron scattering investigation of the structure of semiconductor‐doped glasses,” J. Appl. Phys. 74, 6925–6936 (1993). [CrossRef]
  2. Schott Glass Filter Catalogue (2009).
  3. A. I. Ekimov and A. A. Onushchenko, “Quantum size effect in three-dimensional microscopic semiconductor crystals,” JETP Lett. 34, 345–349 (1981).
  4. C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assembles,” Annu. Rev. Mater. Sci. 30, 545–610 (2000). [CrossRef]
  5. L. E. Brus, “Electronic wave functions in semiconductor clusters: experiment and theory,” J. Chem. Phys. 90, 2555–2560 (1986). [CrossRef]
  6. F. Henneberger, J. Puls, C. Spiegelberg, A. Schulzgen, H. Rossman, V. Jungnickel, and A. I. Ekimo, “Optical and electro-optical properties of II–VI quantum dots,” Semicond. Sci. Technol. 6, A41–A50 (1991). [CrossRef]
  7. Y. Masumoto and K. Snobe, “Size-dependent energy levels of CdTe quantum dots,” Phys. Rev. B 56, 9734–9737(1997). [CrossRef]
  8. M. I. Lifshitz and V. V. Slyozov, “The kinetics of precipitation from supersaturated solid solutions,” J. Phys. Chem. Solids 19, 35–50 (1961). [CrossRef]
  9. R. S. Sonawane, S. D. Naik, S. K. Apte, M. V. Kulkarni, and B. B. Kale, “CdS/CdSSe quantum dots in glass matrix,” Bull. Mater. Sci. 31, 495–499 (2008). [CrossRef]
  10. R. Ince, E. Sinir, M. Feeney, M. H. Yukselici, and A. T. Ince, “A numerical method for determining refractive index of a glass sample from its implicit transcendental function,” Opt. Commun. 281, 3831–3836 (2008). [CrossRef]
  11. M. G. Papadopoulos, A. J. Sadlej, and J. Leszczynski, Non-Linear Optical Properties of Matter: From Molecules to Condensed Phases (Springer, 2006), Vol.  1, pp. 488–490.
  12. E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002), pp. 36–81.
  13. T. Kippeny, L. A. Swafford, and S. J. Rosenthal, “Semiconductor nanocrystals: a powerful visual aid for introducing the particle in a box,” J. Chem. Educ. 79, 1094–1100 (2002). [CrossRef]
  14. O. Stenzel, A. Stendal, M. Roder, and C. Von Borczyshowski, “Tuning of the plasmon absorption frequency of silver and indium nanoclusters via thin amorphous silicon films,” Pure Appl. Opt. 6, 577–588 (1997). [CrossRef]
  15. M. C. Beard, G. M. Turner, and C. A. Schmuttenmear, “Size-dependent photoconductivity in CdSe nanoparticles as measured by time-resolved terahertz spectroscopy,” Nano Lett. 2, 983–987 (2002). [CrossRef]
  16. C. Kittel, Introduction to Solid State Physics, 8th ed.(Wiley, 2004).
  17. R. Rosetti, R. Hull, J. M. Gibson, and L. E. Brus, “Excited electronic states and optical spectra of ZnS and CdS crystallites in the ≊15 to 50 Å size range: evolution from molecular to bulk semiconducting properties,” J. Chem. Phys. 82, 552–559 (1985). [CrossRef]
  18. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981), pp. 114–130.
  19. M. Schäffner, X. Bao, and A. Penzkofer, “Principal optical constants measurement of uniaxial crystal CdSe in the wavelength region between 380 and 950 nm,” Appl. Opt. 31, 4546–4552 (1992). [CrossRef]
  20. Handbook of Optics, 3rd ed. (McGraw-Hill, 2008), Vol.  4.
  21. G. P. Banfi, V. Degiorgio, and D. Ricard, “Nonlinear optical properties of semiconductor nanocrystals,” Adv. Phys. 47, 447–510 (1998). [CrossRef]
  22. Handbook on Physical Properties of Semiconductors: II-VI Compound Semiconductors, S.Adachi, ed. (Springer-Verlag, 2004), Vol.  3.
  23. R. Seoudi, M. M. Elokr, A. A. Shabaka, and A. Sobhi, “Synthesis, characterization, and electrical properties studies of cadmium selenide nanoparticle,” Physica B 403, 152–158(2008). [CrossRef]
  24. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000). [CrossRef]
  25. D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L. W. Wang, and A. P. Alivisatos, “Colloidal nanocrystal heterostructures with linear and branched topology,” Nature 430, 190–195 (2004). [CrossRef]
  26. R. R. Cooney, S. L. Sewall, D. M. Sagar, and P. Kambhampati, “State-resolved manipulations of optical gain in semiconductor quantum dots: size universality, gain tailoring, and surface effects,” J. Chem. Phys. 131, 164706–164719(2009). [CrossRef]
  27. Frontiers of Science and Technology for the 21st Century: Handbook of Nanophase and Nanostructured Materials: Materials Systems and Applications, Z.L.Wang, Y.Liu, and Z.Zhang, eds. (Kluwer, 2003).
  28. M. S. Kurdoglyan, “Resonance intermolecular energy transfer near semiconductor nanoparticles,” Opt. Spectrosc. 91, 609–612 (2001). [CrossRef]
  29. M. G. Bawendi, P. J. Carroll, W. L. Wilson, and L. E. Brus, “Luminescence properties of cadmium selenide quantum crystallites: resonance between interior and surface localized states,” J. Chem. Phys. 96, 946–954 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited