OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 2 — Jan. 10, 2011
  • pp: 155–162

Optical fiber sensor based on oblique angle deposition

Sasani Jayawardhana, Gorgi Kostovski, Alex P. Mazzolini, and Paul R. Stoddart  »View Author Affiliations


Applied Optics, Vol. 50, Issue 2, pp. 155-162 (2011)
http://dx.doi.org/10.1364/AO.50.000155


View Full Text Article

Enhanced HTML    Acrobat PDF (612 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The technique of oblique angle deposition has been extended to the fabrication of nanostructured metal coatings on the tips of standard silica optical fibers by thermal evaporation. The coatings are initiated as metal island films, which grow into extended rodlike structures as the deposition continues. The nanorod coatings demonstrate excellent surface-enhanced Raman scattering performance with variability of less than 10% as shown by direct measurements off the fiber tip with thiophenol as a test analyte. However, in the remote sensing configuration, the nanorod structures perform no better than thin metal island films. This appears to be mainly due to reduced transmission when nanorod lengths exceed 100 nm . Moreover, the variability of remote measurements is increased to 18%. This is believed to be due to variations in coupling efficiency.

© 2011 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(240.6680) Optics at surfaces : Surface plasmons
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.6450) Spectroscopy : Spectroscopy, Raman
(220.4241) Optical design and fabrication : Nanostructure fabrication
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: September 7, 2010
Revised Manuscript: October 29, 2010
Manuscript Accepted: November 16, 2010
Published: January 6, 2011

Citation
Sasani Jayawardhana, Gorgi Kostovski, Alex P. Mazzolini, and Paul R. Stoddart, "Optical fiber sensor based on oblique angle deposition," Appl. Opt. 50, 155-162 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-2-155


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Etchegoin, R. C. Maher, L. F. Cohen, H. Hartigan, R. J. C. Brown, M. J. T. Milton, and J. C. Gallop, “New limits in ultrasensitive trace detection by surface enhanced Raman scattering (SERS),” Chem. Phys. Lett. 375, 84–90(2003). [CrossRef]
  2. J. Kneipp, B. Wittig, H. Bohr, and K. Kneipp, “Surface-enhanced Raman scattering: a new optical probe in molecular biophysics and biomedicine,” Theor. Chem. Acc. 125, 319–327(2009). [CrossRef]
  3. C. L. Haynes, C. R. Yonzon, X. Y. Zhang, and R. P. Van Duyne, “Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection,” J. Raman Spectrosc. 36, 471–484(2005). [CrossRef]
  4. M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36, 485–496 (2005). [CrossRef]
  5. R. Gupta, M. J. Dyer, and W. A. Weimer, “Preparation and characterization of surface plasmon resonance tunable gold and silver films,” J. Appl. Phys. 92, 5264–5271(2002). [CrossRef]
  6. M. T. Sun, S. S. Liu, Z. P. Li, J. M. Duan, M. D. Chen, and H. X. Xu, “Direct visual evidence for the chemical mechanism of surface-enhanced resonance Raman scattering via charge transfer: (II) Binding-site and quantum-size effects,” J. Raman Spectrosc. 40, 1172–1177 (2009). [CrossRef]
  7. D. A. Stuart, J. M. Yuen, N. S. O. Lyandres, C. R. Yonzon, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “In vivo glucose measurement by surface-enhanced Raman spectroscopy,” Anal. Chem. 78, 7211–7215 (2006). [CrossRef] [PubMed]
  8. D. S. Jung, Y. M. Lee, Y. Lee, N. H. Kim, K. Kim, and J. K. Lee, “Facile fabrication of large area nanostructures for efficient surface-enhanced Raman scattering,” J. Mater. Chem. 16, 3145–3149 (2006). [CrossRef]
  9. W. Yuan, H. P. Ho, R. K. Y. Lee, and S. K. Kong, “Surface-enhanced Raman scattering biosensor for DNA detection on nanoparticle island substrates,” Appl. Opt. 48, 4329–4337(2009). [CrossRef] [PubMed]
  10. P. R. Stoddart and D. J. White, “Optical fibre SERS sensors,” Anal. Bioanal. Chem. 394, 1761–1774 (2009). [CrossRef] [PubMed]
  11. D. L. Stokes, Z. H. Chi, and T. Vo-Dinh, “Surface-enhanced-Raman-scattering-inducing nanoprobe for spectrochemical analysis,” Appl. Spectrosc. 58, 292–298 (2004). [CrossRef] [PubMed]
  12. J. M. Bello and T. Vo-Dinh, “Surface-enhanced Raman-scattering fiberoptic sensor,” Appl. Spectrosc. 44, 63–69(1990). [CrossRef]
  13. D. L. Stokes and T. Vo-Dinh, “Development of an integrated single-fiber SERS sensor,” Sens. Actuators B 69, 28–36 (2000). [CrossRef]
  14. D. J. White, A. P. Mazzolini, and P. R. Stoddart, “Fabrication of a range of SERS substrates on nanostructured multicore optical fibres,” J. Raman Spectrosc. 38, 377–382 (2007). [CrossRef]
  15. V. Guieu, P. Garrigue, F. Lagugne-Labarthet, L. Servant, N. Sojic, and D. Talaga, “Remote surface enhanced Raman spectroscopy imaging via a nanostructured optical fiber bundle,” Opt. Express 17, 24030–24035 (2009). [CrossRef]
  16. D. J. White, A. P. Mazzolini, and P. R. Stoddart, “First-approximation simulation of dopant diffusion in nanostructured silica optical fibres,” Photonics Nanostruct. 6, 167–177(2008). [CrossRef]
  17. E. Polwart, R. L. Keir, C. M. Davidson, W. E. Smith, and D. A. Sadler, “Novel SERS-active optical fibers prepared by the immobilization of silver colloidal particles,” Appl. Spectrosc. 54, 522–527 (2000). [CrossRef]
  18. M. K. K. Oo, Y. Han, J. Kanka, S. Sukhishvili, and H. Du, “Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy,” Opt. Lett. 35, 466–468 (2010). [CrossRef]
  19. Y. Han, S. L. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22, 2647–2651 (2010). [CrossRef] [PubMed]
  20. Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504(2007). [CrossRef]
  21. E. J. Smythe, M. D. Dickey, J. M. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9, 1132–1138 (2009). [CrossRef] [PubMed]
  22. G. Kostovski, D. J. White, A. Mitchell, M. W. Austin, and P. R. Stoddart, “Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing,” Biosens. Bioelectron. 24, 1531–1535 (2009). [CrossRef]
  23. C. Viets and W. Hill, “Fibre-optic SERS sensors,” Internet J. Vib. Spectrosc. 4 (2000), http://www.ijvs.com.
  24. K. I. Mullen and K. T. Carron, “Surface-enhanced Raman-spectroscopy with abrasively modified fiber optic probes,” Anal. Chem. 63, 2196–2199 (1991). [CrossRef]
  25. J. P. Scaffidi, M. K. Gregas, V. Seewaldt, and T. Vo-Dinh, “SERS-based plasmonic nanobiosensing in single living cells,” Anal. Bioanal. Chem. 393, 1135–1141 (2008). [CrossRef] [PubMed]
  26. S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y.-P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett. 87, 031908 (2005). [CrossRef]
  27. J. D. Driskell, S. Shanmukh, Y. Liu, S. B. Chaney, X. J. Tang, Y. P. Zhao, and R. A. Dluhy, “The use of aligned silver nanorod Arrays prepared by oblique angle deposition as surface enhanced Raman scattering substrates,” J. Phys. Chem. C 112, 895–901 (2008). [CrossRef]
  28. Y. J. Liu, Z. Y. Zhang, Q. Zhao, R. A. Dluhy, and Y. P. Zhao, “Surface enhanced Raman scattering from an Ag nanorod array substrate: the site dependent enhancement and layer absorbance effect,” J. Phys. Chem. C 113, 9664–9669(2009). [CrossRef]
  29. J.-G. Fan and Y.-P. Zhao, “Direct deposition of aligned nanorod array onto cylindrical objects,” J. Vac. Sci. Technol. B 23, 947–953 (2005). [CrossRef]
  30. J. G. Fan, Y. J. Liu, and Y. P. Zhao, “Integrating aligned nanorod array onto optical fibers for SERS probes,” Proc. SPIE 6327, 63270R (2006). [CrossRef]
  31. M. A. Bryant and J. E. Pemberton, “Surface Raman-scattering of self-assembled monolayers formed from 1-alkanethiols at Ag,” J. Am. Chem. Soc. 113, 3629–3637 (1991). [CrossRef]
  32. J. Steele and M. Brett, “Nanostructure engineering in porous columnar thin films: recent advances,” J. Mater. Sci.: Mater. Electron. 18, 367–379 (2006). [CrossRef]
  33. Y. J. Liu, H. Y. Chu, and Y. P. Zhao, “Silver nanorod array substrates fabricated by oblique angle deposition: morphological, optical, and SERS characterizations,” J. Phys. Chem. C 114, 8176–8183 (2010). [CrossRef]
  34. M. O. Jensen and M. J. Brett, “Periodically structured glancing angle deposition thin films,” IEEE Trans. Nanotechnol. 4, 269–277 (2005). [CrossRef]
  35. K. Morgenstern, G. Rosenfeld, E. Laegsgaard, F. Besenbacher, and G. Comsa, “Measurement of energies controlling ripening and annealing on metal surfaces,” Phys. Rev. Lett. 80, 556–559 (1998). [CrossRef]
  36. Q. Zhou, Y. Liu, Y. He, Z. Zhang, and Y.-P. Zhao, “The effect of underlayer thin films on the surface-enhanced Raman scattering response of Ag nanorod substrates,” Appl. Phys. Lett. 97, 121902(2010). [CrossRef]
  37. Y. Zhao, D. Ye, G.-C. Wang, and T.-M. Lu, “Designing nanostructures by glancing angle deposition,” Proc. SPIE 5219, 59–73 (2003). [CrossRef]
  38. B. Pettinger, U. Wenning, and H. Wetzel, “Angular resolved Raman-spectra from pyridine adsorbed on silver electrodes,” Chem. Phys. Lett. 67, 192–196 (1979). [CrossRef]
  39. Y. J. Liu, J. G. Fan, Y. P. Zhao, S. Shanmukh, and R. A. Dluhy, “Angle dependent surface enhanced Raman scattering obtained from a Ag nanorod array substrate,” Appl. Phys. Lett. 89, 173134 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited