OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 2 — Jan. 10, 2011
  • pp: 194–202

Group velocity dispersion of dyes in solution measured with white-light interferometry

Amelia G.VanEngen Spivey and Nathanael Seid  »View Author Affiliations


Applied Optics, Vol. 50, Issue 2, pp. 194-202 (2011)
http://dx.doi.org/10.1364/AO.50.000194


View Full Text Article

Enhanced HTML    Acrobat PDF (937 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The group velocity dispersion (GVD) coefficient of four different dyes in solution is measured as a function of wavelength and concentration using a white-light Michelson interferometer. We find that the wavelength dependence of the GVD can be considerably different at wavelengths above and below the absorption resonance in a dye. Above the absorption resonance, the dye molecules can make a strong, wavelength-dependent contribution to the GVD of the solution. Below the absorption resonance, the dye molecules tend to contribute negligibly to the GVD of the solution. We find that the contribution of the dye molecules to the GVD can be modeled quite accurately using a simple Lorentz model with parameters set using the measured linear absorption properties of the dye.

© 2011 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(160.4760) Materials : Optical properties
(260.2030) Physical optics : Dispersion

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: August 23, 2010
Manuscript Accepted: November 18, 2010
Published: January 7, 2011

Citation
Amelia G. VanEngen Spivey and Nathanael Seid, "Group velocity dispersion of dyes in solution measured with white-light interferometry," Appl. Opt. 50, 194-202 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-2-194


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Elsevier, 2006), p. 25.
  2. A. A. Zozulya, S. A. Diddams, A. G. Van Engen, and T. S. Clement, “Propagation dynamics of intense femtosecond pulses: Multiple splittings, coalescence, and continuum generation,” Phys. Rev. Lett. 82, 1430–1433 (1999). [CrossRef]
  3. B. Zysset, M. LaGasse, J. Fujimoto, and J. Kafka, “High repetition rate femtosecond dye amplifier using a laser diode pumped neodymium:YAG laser,” Appl. Phys. Lett. 54, 496–498 (1989). [CrossRef]
  4. A. Albrecht Ferro, J. D. Hybl, and D. M. Jonas, “Complete femtosecond linear free induction decay, Fourier algorithm for dispersion relations, and accuracy of the rotating wave approximation,” J. Chem. Phys. 114, 4649–4656 (2001). [CrossRef]
  5. A. Yabushita, T. Fuji, and T. Kobayashi, “Nonlinear propagation of ultrashort pulses in cyanine dye solution investigated by SHG FROG,” Chem. Phys. Lett. 398, 495–499 (2004). [CrossRef]
  6. S. Du, D. Zhang, Y. Shi, Q. Li, B. Feng, X. Han, Y. Weng, and J.-Y. Zhang, “Characterization of ultra-weak fluorescence using picosecond non-collinear optical parametric amplifier,” Opt. Commun. 282, 1884–1887 (2009). [CrossRef]
  7. K. Niu, S. Cong, and S.-Y. Lee, “Femtosecond stimulated Raman scattering for polyatomics with harmonic potentials: Application to Rhodamine 6G,” J. Chem. Phys. 131, 054311 (2009). [CrossRef] [PubMed]
  8. T. Kohmoto, Y. Fukui, S. Furue, K. Nakayama, and Y. Fukuda, “Propagation of femtosecond light pulses in a dye solution: Nonadherence to the conventional group velocity,” Phys. Rev. E 74, 056603 (2006). [CrossRef]
  9. M. Ramon, M. Ariu, R. Xia, D. Bradley, M. Reilly, C. Marinelli, C. Morgan, R. Penty, and I. White, “A characterization of Rhodamine 640 for optical amplification: Collinear pump and signal gain properties in solutions, thin-film polymer dispersions, and waveguides,” J. Appl. Phys. 97, 073517(2005). [CrossRef]
  10. M. Sheeba, M. Rajesh, V. Nampoori, and P. Radhakrishnan, “Fabrication and characterization of dye mixture doped polymer optical fiber as a broad wavelength optical amplifier,” Appl. Opt. 47, 1907–1912 (2008). [CrossRef] [PubMed]
  11. K. Naganuma, K. Mogi, and H. Yamada, “Group-delay measurements using the Fourier transform of an interferometric cross correlation generated by white light,” Opt. Lett. 15, 393–395 (1990). [CrossRef] [PubMed]
  12. S. Diddams and J.-C. Diels, “Dispersion measurements with white-light interferometry,” J. Opt. Soc. Am. B 13, 1120–1129(1996). [CrossRef]
  13. I. Cormack, F. Baumann, and D. Reid, “Measurements of group velocity dispersion using white light interferometry: A teaching laboratory experiment,” Am. J. Phys. 68, 1146–1150 (2000). [CrossRef]
  14. I. Thomann, L. Hollberg, S. Diddams, and R. Equall, “Chromium-doped forsterite: Dispersion measurement with white-light interferometry,” Appl. Opt. 42, 1661–1666 (2003). [CrossRef] [PubMed]
  15. T. Imran, K.-H. Hong, T. J. Yu, and C. H. Nam, “Measurement of the group-delay dispersion of femtosecond optics using white-light interferometry,” Rev. Sci. Instrum. 75, 2266–2270(2004). [CrossRef]
  16. A. G. Van Engen, S. A. Diddams, and T. S. Clement, “Dispersion measurements of water with white-light interferometry,” Appl. Opt. 37, 5679–5686 (1998). [CrossRef]
  17. A. G. Van Engen, S. A. Diddams, and T. S. Clement, “Dispersion measurements of water with white-light interferometry: Errata,” Appl. Opt. 38, 2499 (1999). [CrossRef]
  18. P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988), p. 71.
  19. E. Hecht, Optics (Addison-Wesley, 1987), p. 61.
  20. D. J. Griffiths, Introduction to Electrodynamics (Prentice-Hall, 1999), p. 403.
  21. M. Bass, T. F. Deutsch, and M. J. Weber, “Frequency- and time-dependent gain characteristics of laser- and flashlamp-pumped dye solution lasers,” Appl. Phys. Lett. 13, 120–124(1968). [CrossRef]
  22. C. V. Shank, A. Dienes, and W. T. Silfvast, “Single pass gain of exciplex 4-MU and Rhodamine 6G dye laser amplifiers,” Appl. Phys. Lett. 17, 307–309 (1970). [CrossRef]
  23. T. Urisu and K. Kajiyama, “Concentration dependence of the gain spectrum in methanol solutions of Rhodamine 6G,” J. Appl. Phys. 47, 3559–3562 (1976). [CrossRef]
  24. R. Bhatnagar, N. Singh, R. Chaube, and H. S. Vora, “Design of a transversely pumped, high repetition rate, narrow bandwidth dye laser with high wavelength stability,” Rev. Sci. Instrum. 75, 5126–5130 (2004). [CrossRef]
  25. R. Frontiera, S. Shim, and R. Mathies, “Origin of negative and dispersive features in anti-Stokes and resonance femtosecond stimulated Raman spectroscopy,” J. Chem. Phys. 129, 064507 (2008). [CrossRef] [PubMed]
  26. R. X. Xu, J. Huang, J. S. Xu, D. Sun, G. H. Hinkle, E. W. Martin, and S. P. Povoski, “Fabrication of indocyanine green encapsulated biodegradable microbubbles for structural and functional imaging of cancer,” J Biomed. Opt. 14, 034020(2009). [CrossRef] [PubMed]
  27. F. Rossi, P. Matteini, I. Bruno, P. Nesi, and R. Pini, “Monitoring thermally-induced phase transitions in porcine cornea with the use of fluorescence micro-imaging analysis,” Opt. Express 15, 11178 (2007). [CrossRef] [PubMed]
  28. M. Miwa and T. Shikayama, “ICG fluorescence imaging and its medical applications,” Proc. SPIE 7160, 71600K(2009). [CrossRef]
  29. F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, “A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” Proc. SPIE 7190, 71900L(2009). [CrossRef]
  30. K. Kato, “Ar-ion-laser-pumped infrared dye laser at 875–1084nm,” Opt. Lett. 9, 544–545 (1984). [CrossRef] [PubMed]
  31. T. S. Stark, M. D. Dawson, and A. L. Smirl, “Synchronous and hybrid mode-locking of a Styryl 13 dye laser,” Opt. Commun. 68, 361–363 (1988). [CrossRef]
  32. L. A. Bloomfield, “Excimer-laser pumped infrared dye laser at 907–1023nm,” Opt. Commun. 70, 223–224 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited