OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 2 — Jan. 10, 2011
  • pp: 203–212

Adjustment method of an imaging Stokes polarimeter based on liquid crystal variable retarders

Władysław A. Woźniak, Piotr Kurzynowski, and Sławomir Drobczyński  »View Author Affiliations

Applied Optics, Vol. 50, Issue 2, pp. 203-212 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (963 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The description of adjustment of an imaging Stokes polarimeter constructed and tested in our laboratory is presented. Our polarimeter’s operation is based on six fast intensity distribution measurements realized in six different configurations of linear and circular analyzers. Using liquid crystal variable retarders (LCVRs) makes this construction compact and mechanically simple. However, new problems arise with proper azimuthal alignment as well as with proper LCVR voltage adjustment. Three basic steps of the adjustment procedure adapted to the specific construction of our polarimeter are described in detail. Some remarks concerning the critical parameters of the used CCD camera’s parameters are also presented, as well as experimental verifications of the setup’s accuracy acquired due to the proper adjustment process.

© 2011 Optical Society of America

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(230.0230) Optical devices : Optical devices

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: October 27, 2010
Manuscript Accepted: November 22, 2010
Published: January 7, 2011

Władysław A. Woźniak, Piotr Kurzynowski, and Sławomir Drobczyński, "Adjustment method of an imaging Stokes polarimeter based on liquid crystal variable retarders," Appl. Opt. 50, 203-212 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34, 1558–1568 (1995). [CrossRef]
  2. C. C. Montarou and T. K. Gaylord, “Two-wave-plate compensator for single-point retardation measurement,” Appl. Opt. 43, 6580–6595 (2004). [CrossRef]
  3. P. A. Williams, A. H. Rose, and C. M. Wang, “Rotating-polarizer polarimeter for accurate retardance measurement,” Appl. Opt. 36, 6466–6472 (1997). [CrossRef]
  4. P. Kurzynowski and W. A. Woźniak, “Phase retardation measurement in simple and reverse Senarmont compensators without calibrated quarter wave plates,” Optik (Jena) 113, 51–53 (2002). [CrossRef]
  5. M. Mujat, E. Baleine, and A. Dogariu, “Interferometric imaging polarimeter,” J. Opt. Soc. Am. A 21, 2244–2249 (2004). [CrossRef]
  6. J. F. Lin and Y. L. Lo, “The new circular heterodyne interferometer with electro-optic modulation for measurement of the optical linear birefringence,” Opt. Commun. 260, 486–492(2006). [CrossRef]
  7. M. Takeda, H. Ina, and H. Kobayashi, “Fourier transform method of fringe-pattern analysis for computer based topography and interferometry,” J. Opt. Soc. Am. 72, 156–159 (1982). [CrossRef]
  8. S. Drobczyński, J. M. Bueno, P. Artal, and H. Kasprzak, “Transmission imaging polarimetry for linear birefringent medium using carrier fringe method,” Appl. Opt. 45, 5489–5496 (2006). [CrossRef] [PubMed]
  9. P. Kurzynowski, S. Drobczyński, and W. A. Woźniak, “Dynamic polarization states and birefringence distributions measurements in spatial elliptical polariscope using Fourier analysis method,” Opt. Express 17, 10144–10154 (2009). [CrossRef] [PubMed]
  10. B. Laude-Boulesteix, A. de Martino, B. Drevillon, and L. Schwartz, “Mueller polarimetric imaging system with liquid crystals,” Appl. Opt. 43, 2824–2832 (2004). [CrossRef] [PubMed]
  11. Y. L. Lo, S. Y. Lee, and J. F. Lin, “Polariscope for simultaneous measurement of the principal axis and the phase retardation by use of two phase-locked extractions,” Appl. Opt. 43, 6248–6254 (2004). [CrossRef] [PubMed]
  12. S. Drobczyński and P. Kurzynowski, “Imaging polarimeter for linear birefringence measurements using a liquid crystal modulator,” Opt. Eng. 47, 023603 (2008). [CrossRef]
  13. T. Sato, T. Araki, Y. Sasaki, T. Tsuru, T. Tadokoro, and S. Kawakami, “Compact ellipsometer employing a static polarimeter module with arrayed polarizer and wave-plates elements,” Appl. Opt. 46, 4963–4967 (2007). [CrossRef] [PubMed]
  14. K. Oka and T. Kaneko, “Compact complete imaging polarimeter using birefringent wedge prisms,” Opt. Express 11, 1510–1519 (2003). [CrossRef] [PubMed]
  15. K. Oka and N. Saito, “Snapshot complete imaging polarimeter using Savart plates,” Proc. SPIE 6295, 629508 (2006). [CrossRef]
  16. W. A. Woźniak and P. Kurzynowski, “Compact spatial polariscope for light polarization state analysis,” Opt. Express 16, 10471–10479 (2008). [CrossRef] [PubMed]
  17. P. A. Williams, “Rotating-wave-plate Stokes polarimeter for differential group delay measurements of polarization-mode dispersion,” Appl. Opt. 38, 6508–6515 (1999). [CrossRef]
  18. P. Goudail, P. Terrier, Y. Takakura, L. Bigué, F. Galland, and V. Devlaminck, “Target detection with liquid-crystal-based passive Stokes polarimeter,” Appl. Opt. 43, 274–282(2004). [CrossRef] [PubMed]
  19. J. E. Wolfe and R. A. Chipman, “Polarimetric characterization of liquid-crystal-on-silicon panels,” Appl. Opt. 45, 1688–1703 (2006). [CrossRef] [PubMed]
  20. J. S. Baba and P. R. Boudreaux, “Wavelength, temperature and voltage dependent calibration of a nematic liquid crystal multispectral polarization generating device,” Appl. Opt. 46, 5539–5544 (2007). [CrossRef] [PubMed]
  21. P. Terrier, J. M. Charbois, and V. Devlaminck, “Fast-axis orientation dependence on driving voltage for a Stokes polarimeter based on concrete liquid-crystal variable retarders,” Appl. Opt. 49, 4278–4283 (2010). [CrossRef] [PubMed]
  22. P. Yeh and C. Gu, “Optics of Liquid Crystal Displays(Wiley, 2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited