OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 2 — Jan. 10, 2011
  • pp: 218–221

Nanoamorphous carbon as a blackbody source in plasmonic thermal emitters

Veysi Demir, Ismail Emre Araci, Alexandr Kropachev, Terje Skotheim, Robert A. Norwood, and N. Peyghambarian  »View Author Affiliations


Applied Optics, Vol. 50, Issue 2, pp. 218-221 (2011)
http://dx.doi.org/10.1364/AO.50.000218


View Full Text Article

Enhanced HTML    Acrobat PDF (381 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ag/dielectric/Ag-type plasmonic thermal emitters (PTEs) following a hexagonal lattice were fabricated, and their plasmonic emission spectrums were characterized with Fourier transform infrared spectroscopy. Nanoamorphous carbon (NAC) is used as a dielectric layer. Doping NAC with various materials over a wide range of levels enables control of the resistivity of the composite films where MoSi 2 was selected as the dopant. Wavelength tuning in the range of 4 7 μm is demonstrated by changing the conductivity of the composite films as well as the lattice periodicity of the hexagonal lattice. We also tested the mechanical stability of the PTEs under mechanical strains.

© 2011 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: September 7, 2010
Manuscript Accepted: November 11, 2010
Published: January 7, 2011

Citation
Veysi Demir, Ismail Emre Araci, Alexandr Kropachev, Terje Skotheim, Robert A. Norwood, and N. Peyghambarian, "Nanoamorphous carbon as a blackbody source in plasmonic thermal emitters," Appl. Opt. 50, 218-221 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-2-218


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Kaplan, Practical Applications of Infrared Thermal Sensing and Imaging Equipment (SPIE, 2007). [CrossRef]
  2. I. El-Kady, R. Biswas, Y. Ye, M. F. Su, I. Puscasu, M. Pralle, E. A. Johnson, J. Daly, and A. Greenwald, “Tunable narrow-band infrared emitters from hexagonal lattices,” Photonics Nanostruct. Fundam. Appl. 1, 69–77 (2003). [CrossRef]
  3. Q. Wei, R. J. Narayan, A. K. Sharma, J. Sankar, and J. Narayan, “Preparation and mechanical properties of composite diamond-like carbon thin films,” J. Vac. Sci. Technol. A 17, 3406–3414 (1999). [CrossRef]
  4. S. Tay, A. Kropachev, I. E. Araci, T. Skotheim, R. A. Norwood, and N. Peyghambarian, “Plasmonic thermal IR emitters based on nanoamorphous carbon,” Appl. Phys. Lett. 94, 071113 (2009). [CrossRef]
  5. I. E. Araci, V. Demir, A. Kropachev, T. Skotheim, R. A. Norwood, and N. Peyghambarian, “Mechanical and thermal stability of plasmonic emitters on flexible polyimide substrates,” Appl. Phys. Lett. . 97, 041102 (2010). [CrossRef]
  6. M. Moseler, P. Gumbsch, C. Casiraghi, A. C. Ferrari, and J. Robertson, “The ultrasmoothness of diamond-like carbon surfaces,” Science 309, 1545–1548 (2005). [CrossRef] [PubMed]
  7. A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, and V. G. Ralchenko, “Carbon structures with three-dimensional periodicity at optical wavelengths,” Science 282, 897–901 (1998). [CrossRef] [PubMed]
  8. Data taken from Intex Inc. can be found at http://www.eoc-inc.com/infrared_ir_pulsable_sources.htm.
  9. Q. F. Huang, S. F. Yoon, Rusli, H. Yang, B. Gan, Kerlit Chew, and J. Ahn, “Conduction mechanism in molybdenum-containing diamond-like carbon deposited using electron cyclotron resonance chemical vapor deposition,” J. Appl. Phys. 88, 4191 (2000). [CrossRef]
  10. Q. F. Huang, S. F. Yoon, Rusli, Q. Zhang, and J. Ahn, “Dielectric properties of molybdenum-containing diamond-like carbon films deposited using electron resonance chemical vapor deposition,” Thin Solid Films 409, 211–219 (2002). [CrossRef]
  11. Q. Wei, R. J. Narayan, A. K. Sharma, J. Sankar, and J. Narayan, “Preparation and mechanical properties of composite diamond-like carbon thin films,” J. Vac. Sci. Technol. A 17, 3406–3414 (1999). [CrossRef]
  12. URL:http://www.prostatcorp.com.
  13. R. A. Norwood, H. Sumimura, S. Tay, K. Yamnitsky, A. Kropachev, J. Thomas, N. Peyghambarian, J. H. Moon, Y. Shu, and T. Skotheim, “New organic infiltrants of 2-D and 3-D photonic crystals,” Proc. SPIE 6331, 63310A (2006). [CrossRef]
  14. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander Jr., and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983). [CrossRef] [PubMed]
  15. K. J. Kim, J. K. Seo, and M. C. Oh, “Strain induced tunable wavelength filters based on flexible polymer waveguide Bragg reflector,” Opt. Express 16, 1423–1430 (2008). [CrossRef] [PubMed]
  16. U. Beck, D. T. Smith, G. Reiners, and S. J. Dapkunas, “Mechanical properties of SiO2 and Si3N4 coatings: a BAM/NIST co-operative project,” Thin Solid Films 332, 164–171 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited