OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 2 — Jan. 10, 2011
  • pp: 231–236

Fiber-optic temperature sensor based on interaction of temperature-dependent refractive index and absorption of germanium film

Min Li and Yulin Li  »View Author Affiliations


Applied Optics, Vol. 50, Issue 2, pp. 231-236 (2011)
http://dx.doi.org/10.1364/AO.50.000231


View Full Text Article

Enhanced HTML    Acrobat PDF (619 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The interaction of a large temperature-dependent refractive index and a temperature-dependent absorption of semiconductor materials at 1550 nm can be used to build a very sensitive, film coated fiber-optic temperature probe. We developed a sensor model for the optical fiber-germanium film sensor. A temperature sensitivity of reflectivity change of 0.0012 / ° C , corresponding to 0.1 ° C considering a moderate signal processing system, over 100 ° C within the temperature regime of 20 ° C to 120 ° C , has been demonstrated by experimental tests of the novel sensor. The potential sensitivity and further applications of the sensor are discussed.

© 2011 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 8, 2010
Revised Manuscript: November 23, 2010
Manuscript Accepted: November 25, 2010
Published: January 7, 2011

Citation
Min Li and Yulin Li, "Fiber-optic temperature sensor based on interaction of temperature-dependent refractive index and absorption of germanium film," Appl. Opt. 50, 231-236 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-2-231


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Zhao, M. Rong, and Y. B. Liao, “Fiber optic temperature sensor used for oil well based on semiconductor optical absorption,” IEEE Sens. J. 3, 400–403 (2003). [CrossRef]
  2. K. Kyumn, S. Tai, T. Sawada, and M. Nunoshita, “Fiber optical instrument for temperature measurement,” IEEE J. Quantum Electron. 18, 676–679 (1982). [CrossRef]
  3. M. M. Salour, G. Schoner, M. Kull, and J. H. Bechtel, “Semiconductor platelet fiber optic temperature sensor,” Electron. Lett. 21,135–136 (1985). [CrossRef]
  4. M. F. Sultan and M. J. O’Rourke, “Temperature sensing by band gap optics absorption in semiconductors,” Proc. SPIE 2839, 191–202 (1996). [CrossRef]
  5. C. Tanguy, “Temperature dependence of the refractive index of direct band gap semiconductors near the absorption threshold: application to GaAs,” J. Appl. Phys. 80, 4626–4633 (1996). [CrossRef]
  6. B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006). [CrossRef]
  7. J. Jasny, B. Nickel, and P. Borowicz, “Wavelength and temperature-dependent measurement of refractive indices,” J. Opt. Soc. Am. B 21, 729–738 (2004). [CrossRef]
  8. P. J. L. Hen and L. K. J. Vandamme, “Empirical temperature dependence of the refractive index of semiconductors,” J. Appl. Phys. 77, 5476–5478 (1995). [CrossRef]
  9. N. Cherroret, A. Chakravarty, and A. Kar, “Temperature-dependent refractive index of semiconductors,” J. Mater Sci. 43, 1795–1801 (2008). [CrossRef]
  10. L. Yang, H. L. Xin, Q. Fang, C. X. Wang, F. Li, and Z. M. Li, “New type of multimode interference-type thermo-optic variable optical attenuator,” Opt. Eng. 43, 2497–2498 (2004). [CrossRef]
  11. A. Himeno and M. Yamaguchi, “Recent progress on silica-based optical switches and free-space optical switches,” Proc. SPIE 2691, 72–81 (1996). [CrossRef]
  12. X. Sun, M. Li, C. Zhou, and Y. L. Li, “Linearity analysis of fiber-optic temperature sensor based on semiconductor optical absorption,” Acta. Opt. Sin. 28 (S2), 335–338 (2008).
  13. Wikipedia, “Fused quartz,” http://en.wikipedia.org/wiki/Fused_quartz.
  14. S. Saha, N. Mehan, K. Sreenivas, and V. Gupta, “Temperature dependent optical properties of (002) oriented ZnO thin film using surface plasmon resonance,” Appl. Phys. Lett. 95, 071106 (2009). [CrossRef]
  15. V. Sorianello, A. Perna, L. Colace, G. Assanto, H. C. Luan, and L. C. Kimerling, “Near-infrared absorption of germanium thin films on silicon,” Appl. Phys. Lett. 93, 111115 (2008). [CrossRef]
  16. “Index of refraction,” http://www.cvilaser.com/Common/PDFs/Index_of_Refraction.pdf.
  17. T. M. Donovan and W. E. Spicer, “Optical properties of amorphous germanium films,” Phys. Rev. B 2, 397–413 (1970). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited