OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 20 — Jul. 10, 2011
  • pp: 3428–3434

Design and analysis of a phase modulator based on a metal–polymer–silicon hybrid plasmonic waveguide

Xiaomeng Sun, Linjie Zhou, Xinwan Li, Zehua Hong, and Jianping Chen  »View Author Affiliations


Applied Optics, Vol. 50, Issue 20, pp. 3428-3434 (2011)
http://dx.doi.org/10.1364/AO.50.003428


View Full Text Article

Enhanced HTML    Acrobat PDF (785 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A plasmonic-hybrid-waveguide-based optical phase modulator is proposed and analyzed. The field enhancement in the low-index high-nonlinear polymer layer provides nanoscale optical confinement and a fast optical modulation speed. At 2.5 V drive voltage, a π phase shift can be obtained for a 13 - μm -long plasmonic waveguide. Because of its small capacitance and parasitic resistance, the modulation bandwidth can reach up to 100 GHz with a low power consumption of 9 fJ / bit . The plasmonic waveguide is connected to a silicon wire waveguide via an adiabatic taper with a coupling efficiency of 91 % . The phase modulator can find potential applications in optical telecommunication and interconnects.

© 2011 Optical Society of America

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(240.6680) Optics at surfaces : Surface plasmons
(250.2080) Optoelectronics : Polymer active devices
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Optics at Surfaces

History
Original Manuscript: February 28, 2011
Revised Manuscript: May 16, 2011
Manuscript Accepted: May 18, 2011
Published: July 1, 2011

Citation
Xiaomeng Sun, Linjie Zhou, Xinwan Li, Zehua Hong, and Jianping Chen, "Design and analysis of a phase modulator based on a metal–polymer–silicon hybrid plasmonic waveguide," Appl. Opt. 50, 3428-3434 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-20-3428


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V.M.Agranovich and D.L.Mills, eds., Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces (Elsevier, 1982).
  2. See the review of Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces by H. J. Simon, J. Opt. Soc. Am. B 1, 410 (1984).
  3. D. Gramotnev and S. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010). [CrossRef]
  4. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31, 3447–3449(2006). [CrossRef] [PubMed]
  5. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006). [CrossRef] [PubMed]
  6. D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29, 1069–1071 (2004). [CrossRef] [PubMed]
  7. G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30, 3359–3361 (2005). [CrossRef]
  8. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005). [CrossRef] [PubMed]
  9. D. F. P. Pile, D. K. Gramotnev, R. F. Oulton, and X. Zhang, “On long-range plasmonic modes in metallic gaps,” Opt. Express 15, 13669–13674 (2007). [CrossRef] [PubMed]
  10. E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16, 45–57 (2008). [CrossRef] [PubMed]
  11. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496–500 (2008). [CrossRef]
  12. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18, 12971–12979 (2010). [CrossRef] [PubMed]
  13. M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of subwavelength confined mode of metal dielectric-gap optical waveguides,” IEEE Photon. Technol. Lett. 21, 362–364 (2009). [CrossRef]
  14. D. X. Dai and S. L. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 17, 16646–16653 (2009). [CrossRef] [PubMed]
  15. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon. 4, 518–526(2010). [CrossRef]
  16. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Sel. Top. Quantum Electron. 23, 123–129 (1987). [CrossRef]
  17. G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28, 83–85(1992). [CrossRef]
  18. J.-M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide,” Opt. Express 16, 4177–4191 (2008). [CrossRef] [PubMed]
  19. P. Rabiei, W. Steier, C. Zhang, and L. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20, 1968–1975 (2002). [CrossRef]
  20. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  21. G. Wang, T. Baehr-Jones, M. Hochberg, and A. Scherer, “Design and fabrication of segmented, slotted waveguides for electro-optic modulation,” Appl. Phys. Lett. 91, 143109(2007). [CrossRef]
  22. I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express 18, 348–363 (2010). [CrossRef] [PubMed]
  23. T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 v,” Appl. Phys. Lett. 92, 163303 (2008). [CrossRef]
  24. T. D. Kim, J. W. Kang, J. D. Luo, S. H. Jang, J. W. Ka, N. Tucker, J. B. Benedict, L. R. Dalton, T. Gray, R. M. Overney, D. H. Park, W. N. Herman, and A. K. Y. Jen, “Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses,” J. Am. Chem. Soc. 129, 488–489 (2007). [CrossRef] [PubMed]
  25. L. R. Dalton, B. H. Robinson, A. K. Jen, P. Ried, B. Eichinger, S.-H. Jang, J. Luo, S. Liu, Y. Liao, K. A. Firestone, N. P. Bhatambrekar, D. Bale, M. A. Haller, S. Bhattacharjee, J. Schendel, P. A. Sullivan, S. Hammond, N. Buker, F. Cady, A. Chen, and W. H. Steier, “Organic electro-optic materials,” Proc. SPIE 5621, 93–104 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited