OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 20 — Jul. 10, 2011
  • pp: 3513–3518

Superfocusing effect in the chain of silver nanorods

Zhidong Zhang, Zhongyue Zhang, and Hongyan Wang  »View Author Affiliations

Applied Optics, Vol. 50, Issue 20, pp. 3513-3518 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (648 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A chain of three silver nanorods with progressively decreasing sizes and separations is designed to focus the electric fields around the small nanorods. The optical properties of the chain of silver nanorods are investigated by the discrete dipole approximation method. The results show that, compared with the individual small nanorod and the chain of two nanorods, many enhanced electric fields are focused around the small nanorod of the chain of three nanorods due to the electric field couplings between adjacent nanorods. Therefore, the design of the chain of three nanorods provides a way to obtain stronger electric fields. In addition, how the structural parameters of the chain of three nanorods affect their optical properties is also studied.

© 2011 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(310.6628) Thin films : Subwavelength structures, nanostructures
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

Original Manuscript: January 13, 2011
Revised Manuscript: May 21, 2011
Manuscript Accepted: May 23, 2011
Published: July 5, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

Zhidong Zhang, Zhongyue Zhang, and Hongyan Wang, "Superfocusing effect in the chain of silver nanorods," Appl. Opt. 50, 3513-3518 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404–137407(2004). [CrossRef] [PubMed]
  2. J. X. Fu, B. Park, and Y. P. Zhao, “Nanorod-mediated surface plasmon resonance sensor based on effective medium theory,” Appl. Opt. 48, 4637–4649 (2009). [CrossRef] [PubMed]
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005). [CrossRef] [PubMed]
  4. L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005). [CrossRef] [PubMed]
  5. P. E. Barclay, O. Painter, C. Santori, K. M. Fu, and R. G. Beausoleil, “Coherent interference effects in a nano-assembled optical cavity-QED system,” Opt. Express 17, 8081–8097(2009). [CrossRef] [PubMed]
  6. B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, and O. J. F. Martin, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112, 7761–7774 (2000). [CrossRef]
  7. D. K. Gramotneva, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach,” J. Appl. Phys. 98, 104302 (2005). [CrossRef]
  8. Z. Y. Fang, H. Qi, C. Wang, and X. Zhu, “Hybrid plasmonic waveguide based on tapered dielectric nanoribbon: excitation and focusing,” Plasmonics 5, 207–212 (2010). [CrossRef]
  9. T. A. Alexander and D. M. Le, “Characterization of a commercialized SERS-active substrate and its application to the identification of intact Bacillus endospores,” Appl. Opt. 46, 3878–3890 (2007). [CrossRef] [PubMed]
  10. D. F. P. Pilea and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89, 041111 (2006). [CrossRef]
  11. C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanomitter on tip,” Nano Lett. 10, 592–596(2010). [CrossRef] [PubMed]
  12. A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, “Superfocusing of surface polariton in the conical structure,” J. Appl. Phys. 87, 3785–3788 (2000). [CrossRef]
  13. K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanosphere as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003). [CrossRef] [PubMed]
  14. N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010). [CrossRef] [PubMed]
  15. V. Lotito, U. Sennhauser, and C. Hafner, “Effects of asymmetric surface corrugations on fully metal-coated scanning near field optical microscopy tip,” Opt. Express 18, 8722–8725 (2010). [CrossRef] [PubMed]
  16. S. Kim, Y. J. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett. 92, 013103 (2008). [CrossRef]
  17. A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. D. Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9, 3922–3929 (2009). [CrossRef] [PubMed]
  18. G. V. Pavan Kumar, “Near-field optical properties of silver nanocylinders arranged in a Pascal triangle,” Appl. Opt. 49, 6872–6877 (2010). [CrossRef] [PubMed]
  19. T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103, 9846–9853 (1999). [CrossRef]
  20. T. Draine and P. J. Flatau, “Discrete dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499(1994). [CrossRef]
  21. Y. You, G. W. Kattawar, C. H. Li, and P. Yang, “Internal dipole radiation as a tool for particle identification,” Appl. Opt. 45, 9115–9124 (2006). [CrossRef] [PubMed]
  22. Z. Y. Zhang and Y. P. Zhao, “The optical properties of helical Ag nanostructure calculated by discrete dipole approximation method,” Appl. Phys. Lett. 90, 221501 (2007). [CrossRef]
  23. Z. Laczik, “discrete-dipole-approximation-based light-scattering calculations for particles with a real refractive index smaller than unity,” Appl. Opt. 35, 3736–3745 (1996). [CrossRef] [PubMed]
  24. S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3078 (1999). [CrossRef]
  25. N. Félidj, J. Aubard, and Georges Lévi, “Discrete dipole approximation for ultraviolet visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys. 111, 1195–1208 (1999). [CrossRef]
  26. M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, “Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and discrete dipole approximation,” Appl. Opt. 44, 5249–5256 (2005). [CrossRef] [PubMed]
  27. W. Yuan, H. P. Ho, R. K. Y. Lee, and S. K. Kong, “Surface-enhanced Raman scattering biosensor for DNA detection on nanoparticle island substrates,” Appl. Opt. 48, 4329–4337(2009). [CrossRef] [PubMed]
  28. Z. Y. Zhang and Y. P. Zhao, “Extinction spectra and electrical field enhancement of Ag nanorods with different topologic shapes,” J. Appl. Phys. 102, 113308 (2007). [CrossRef]
  29. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photon. 4, 312–315 (2010). [CrossRef]
  30. A. V. Alekseeva, V. A. Bogatyrev, L. A. Dykman, B. N. Khlebtsov, L. A. Trachuk, A. G. M. Elnikov, and N. G. Khlebtsov, “Preparation and optical scattering characterization of gold nanorods and their application to a dot-immunogold assay,” Appl. Opt. 44, 6285–6295 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited