OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 20 — Jul. 10, 2011
  • pp: 3538–3546

Dispersion-optimized optical fiber for high-speed long-haul dense wavelength division multiplexing transmission

Jindong Wu, Liuhua Chen, Qingguo Li, Wenwen Wu, Keyuan Sun, and Xingkun Wu  »View Author Affiliations


Applied Optics, Vol. 50, Issue 20, pp. 3538-3546 (2011)
http://dx.doi.org/10.1364/AO.50.003538


View Full Text Article

Enhanced HTML    Acrobat PDF (719 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Four non-zero-dispersion-shifted fibers with almost the same large effective area ( A eff ) and optimized dispersion properties are realized by novel index profile designing and modified vapor axial deposition and modified chemical vapor deposition processes. An A eff of greater than 71 μm 2 is obtained for the designed fibers. Three of the developed fibers with positive dispersion are improved by reducing the 1550 nm dispersion slope from 0.072 ps / nm 2 / km to 0.063 ps / nm 2 / km or 0.05 ps / nm 2 / km , increasing the 1550 nm dispersion from 4.972 ps / nm / km to 5.679 ps / nm / km or 7.776 ps / nm / km , and shifting the zero-dispersion wavelength from 1500 nm to 1450 nm . One of these fibers is in good agreement with G655D and G.656 fibers simultaneously, and another one with G655E and G.656 fibers; both fibers are beneficial to high-bit long-haul dense wavelength division multiplexing systems over S-, C-, and L-bands. The fourth developed fiber with negative dispersion is also improved by reducing the 1550 nm dispersion slope from 0.12 ps / nm 2 / km to 0.085 ps / nm 2 / km , increasing the 1550 nm dispersion from 4 ps / nm / km to 6.016 ps / nm / km , providing facilities for a submarine transmission system. Experimental measurements indicate that the developed fibers all have excellent optical transmission and good macrobending and splice performances.

© 2011 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2400) Fiber optics and optical communications : Fiber properties
(060.2430) Fiber optics and optical communications : Fibers, single-mode

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: February 14, 2011
Revised Manuscript: May 1, 2011
Manuscript Accepted: May 9, 2011
Published: July 6, 2011

Citation
Jindong Wu, Liuhua Chen, Qingguo Li, Wenwen Wu, Keyuan Sun, and Xingkun Wu, "Dispersion-optimized optical fiber for high-speed long-haul dense wavelength division multiplexing transmission," Appl. Opt. 50, 3538-3546 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-20-3538


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. Bertran-Pardo, J. Renaudier, G. Charlet, M. Salsi, M. Bertolini, H. Mardoyan, P. Tran, C. Koebele1, and S. Bigo, “PDM-QPSK: on the system benefits arising from temporally interleaving polarization tributaries at 100 Gb/s,” Opt. Express 17, 19902–19907 (2009). [CrossRef] [PubMed]
  2. D. van den Borne, V. A. J. M. Sleiffer, M. S. Alfiad, S. L. Jansen, and T. Wuth, “POLMUX-QPSK modulation and coherent detection: the challenge of long-haul 100G transmission,” in Proceedings of the 35th European Conference on Optical Communication ECOC 2009 (ECOC, 2009), paper 3.4.1.
  3. M. S. Alfiad, D. van den Borne, S. L. Jansen, T. Wuth, M. Kuschnerov, G. Grosso, A. Napoli, and H. de Waardt, “111 Gb/s POLMUX-RZ-DQPSK transmission over LEAF: optical versus electrical dispersion compensation,” in Proceedings of Optical Fiber Communication, collocated National Fiber Optic Engineers Conference OFC/NFOEC 2009 (Optical Society of America, 2009), paper OThR4.
  4. S. Gringeri, R. Egorov, B. Basch, G. Wellbrock, B. Zhang, C. Malouin, S. Liu, E. Ibragimov, S. Khatana, R. Lofland, R. Marcoccia, T. Schmidt, C. Pulikkaseril, M. Roelens, L. Fabiny, and S. Frisken, “Real-time 127 Gb/s coherent PM-QPSK transmission over 1000 km NDSF with >10 cascaded 50 GHz ROADMs,” in Proceedings of the 36th European Conference on Optical Communication ECOC 2010 (ECOC2010), paper P 4.09.
  5. J. D. Downie, J. Hurley, J. Cartledge, S. Bickham, and S. Mishra, “Transmission of 112 Gb/s PM-QPSK signals over 7200 km of optical fiber with very large effective area and ultra-low loss in 100 km spans with EDFAs only,” in Proceedings of Optical Fiber Communication, collocated National Fiber Optic Engineers Conference OFC/NFOEC 2011 (Optical Society of America, 2011), paper OMI6. [PubMed]
  6. A. Carena, G. Bosco, and V. Curri, “Coherent polarization-multiplexed formats: receiver requirements and mitigation of fiber non-linear effects,” in Proceedings of the 36th European Conference on Optical Communication ECOC 2010 (ECOC, 2010), paper Mo.2.C.1.
  7. R. Chen, M. O’Sullivan, C. Ward, S. Asselin, and M. Belanger, “Next generation transmission fiber for coherent systems,” in Proceedings of Optical Fiber Communication, collocated National Fiber Optic Engineers Conference OFC/NFOEC 2010 (Optical Society of America, 2010), paper OTuI1. [PubMed]
  8. P. Nouchi, B. Dany, J.-F. Campion, L.-A. de Montmorillon, P. Sillard, and A. Bertaina, “Optical communication and fiber design,” Ann. Telecommun. 58, 1586–1602, DOI: 10.1007/BF03001219. [CrossRef]
  9. T. Okuno, T. Ooishi, and T. Kato, “Optimum dispersion of non-zero dispersion shifted fiber for high bit rate DWDM systems,” in Proceedings of Optical Fiber Communication Conference OFC’01 (Optical Society of America, 2001), paper TuH4-1.
  10. D. Peckham, A. E. Judy, and R. B. Kummer, “Reduced dispersion slope, non-zero dispersion fiber,” in Proceedings of the 24th European Conference on Optical Communication ECOC’98 (ECOC, 1998), pp. 139–140.
  11. Y. Liu and A. J. Antos, “Dispersion-shifted large-effective-area fiber for amplified high-capacity long-distance systems,” in Proceedings of Optical Fiber Communication Conference OFC’97 (Optical Society of America, 1997), pp. 69–72. [CrossRef]
  12. M. Suzuki and N. Edagawa, “Dispersion-managed high-capacity ultra-long-haul transmission,” J. Lightwave Technol. 21, 916–929 (2003). [CrossRef]
  13. S. Matsuo, K. Aikawa, N. Shimada, S. Tanigawa, K. Himeno, and K. Harada, “Non-linearity suppressed fiber link of large-effective-area medium dispersion fiber and dispersion compensation fiber,” in Proceedings of the 28th European Conference on Optical Communication ECOC 2002 (ECOC, 2002), paper 3.2.4.
  14. K. Murasa, K. Imamura, and T. Yagi, “New type of positive medial dispersion fiber (P-MDF150) with dispersion as 10 ps/nm/km and Aeff about 150 μm2,” in Proceedings of Optical Fiber Communication Conference OFC’03 (Optical Society of America, 2003), pp. 149–150.
  15. X. Jiang and R. Wang, “Non-zero dispersion-shifted optical fiber with ultra-large effective area and low dispersion slope for terabit communication system,” Opt. Commun. 236, 69–74 (2004). [CrossRef]
  16. G. Yandong and J. Shuisheng, “Research on large effective area fiber,” Opt. Commun. Technol. 23, 126–130 (1999).
  17. L. Mingjun and A. Danied, “Optical transmission fiber design evolution,” J. Lightwave Technol. 26, 1079–1092 (2008). [CrossRef]
  18. W. Jindong, W. Xingkun, L. Weimin, W. Haigang, Z. Liyong, and H. Xiaopeng, “Improved fiber design and fabrication of non-zero dispersion-shifted fibers,” Acta Opt. Sin. 29, 2692–2696 (2009). [CrossRef]
  19. K. Tsujikawa, K. Tajima, and J. Zhou, “Intrinsic loss of optical fibers,” Opt. Fiber Technol. 11, 319–331 (2005). [CrossRef]
  20. M. Ohashi, M. Tateda, K. Shiraki, and K. Tajima, “Imperfection loss reduction in viscosity-matched optical fibers,” IEEE Photon. Technol. Lett. 5, 812–814 (1993). [CrossRef]
  21. M. Tateda, M. Ohashi, K. Tajima, and K. Shiraki, “Design of viscosity-matched optical fibers,” IEEE Photon. Technol. Lett. 4, 1023–1025 (1992). [CrossRef]
  22. R. Yamauchi, M. Miyamoto, and T. Abiru, “Design and performance of Gaussian-profile dispersion-shifted fibers manufactured by VAD process,” J. Lightwave Technol. 4, 997–1004(1986). [CrossRef]
  23. Z. Liyong, W. Xingkun, and Y. Rongjin, “A differential iteration solution to chromatic dispersion of optical fibers,” Acta Photon. Sin. 11, 2079–2082 (2007).
  24. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002). [CrossRef]
  25. K. Petermann, “Constraints for fundamental-mode spot size for broadband dispersion-compensated single-mode fibers,” Electron. Lett. 19, 712–714 (1983). [CrossRef]
  26. M. Ohashi, K. Shiraki, and K. Tajima, “Optical loss property of silica-based single-mode fibers,” J. Lightwave Technol. 10, 539–543 (1992). [CrossRef]
  27. A. Naka and S. Saito, “In-line amplifier transmission distance determined by self-phase modulation and group-velocity dispersion,” J. Lightwave Technol. 12, 280–287 (1994).
  28. A. Sarkar, “Trends in optical fiber technologies,” J. Lightwave Technol. 6, 404–410 (1999). [CrossRef]
  29. Y. Yokoyama, T. Kato, M. Hirano, M. Onishi, E. Sasaoka, Y. Makio, and M. Nishimura, “Practically feasible dispersion flattened fibers produced by VAD technique,” in Proceedings of the 24th European Conference on Optical Communication ECOC’98 (ECOC, 1998), pp 20–24.
  30. W. Jindong, P. Minghua, D. Linfeng, S. Keyuan, P. Zhiyong, S. Shenyuan, L. Wantong, and Q. Guoxiang, “AVCD process for producing optical fiber preform,” Study Opt. Commun. 117, 38–40 (2003, in Chinese).
  31. S. Matsuo, S. Tanigawa, K. Himeno, and K. Harada, “New medium-dispersion fiber with large effective area and low dispersion slope,” in Proceedings of Optical Fiber Communication Conference OFC’02 (Optical Society of America, 2002), pp. 329–330.
  32. L. Grüner-Nielsen, S. N. Knudsen, T. Veng, B. Edvold, and C. C. Larsen, “Design and manufacture of dispersion compensating fibre for simultaneous compensation of dispersion and dispersion slope,” in Proceedings of Optical Fiber Communication Conference and the International Conference on Integrated Optics and Optical Fiber Communication OFC/IOOC’99 (Optical Society of America, 1999), paper WM132-1. [CrossRef]
  33. M. Suzuki, H. Kidorf, N. Edagawa, H. Taga, N. Takeda, K. Imai, S. Yamamoto, M. Ma, F. Kerfoot, R. Maybach, H. Adelman, V. Arya, C. Chen, S. Evangelides, D. Gray, B. Pedersen, and A. Puc, “170 Gbit/s transmission over 10850 km using large core transmission fiber,” in Proceedings of Optical Fiber Communication Conference OFC’98 (Optical Society of America, 1998), paper PD17. [CrossRef]
  34. M. Vaa, B. Bakhshi, E. A. Golovchenko, Y. Chai, F. Heismann, H. Li, M. Arend, W. W. Patterson, D. G. Duff, A. L. Simons, G. T. Harvey, R. L. Maybach, and N. S. Bergano, “Demonstration of 640 Gbit/s7000 km submarine transmission system technology ready for field deployment,” in Proceedings of Optical Fiber Communication Conference OFC’01 (Optical Society of America, 2001), paper WF5.
  35. Y. Yamada, S. Nakagawa, K. Takshina, T. Kawazawa, H. Taga, and K. Goto, “25 GHz spacing ultra-dense WDM transmission experiment of 1 Tbit/s (100 WDM×10 Gbit/s) over 7300 km using non pre-chirped RZ format,” Electron. Lett. 35, 2212–2213 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited