OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 20 — Jul. 10, 2011
  • pp: 3646–3652

Implementation of phase-shift patterns using a holographic projection system with phase-only diffractive optical elements

Wei-Feng Hsu, Yu-Wen Chen, and Yuan-Hong Su  »View Author Affiliations

Applied Optics, Vol. 50, Issue 20, pp. 3646-3652 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1219 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We proposed a method to implement spatial phase-shift patterns with subdiffraction limited features through a holographic projection system. The input device of the system displayed phase-only diffractive optical elements that were calculated using the iterative Fourier-transform algorithm with the dummy-area method. By carefully designing the target patterns to the algorithm, the diffractive optical elements generated the Fourier-transformed images containing the phase-shift patterns in which the widths of dark lines were smaller than the diffraction limit. With these demonstrations, we have successfully shown that the near-field phase-shift lithographic technique can be realized through an inexpensive maskless lithographic system and can still achieve subdiffraction limited images.

© 2011 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(050.5080) Diffraction and gratings : Phase shift
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing

ToC Category:
Fourier Optics and Signal Processing

Original Manuscript: January 19, 2011
Revised Manuscript: May 25, 2011
Manuscript Accepted: May 26, 2011
Published: July 8, 2011

Wei-Feng Hsu, Yu-Wen Chen, and Yuan-Hong Su, "Implementation of phase-shift patterns using a holographic projection system with phase-only diffractive optical elements," Appl. Opt. 50, 3646-3652 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices 29, 1828–1836 (1982). [CrossRef]
  2. M. D. Levenson, “Extending the lifetime of optical lithography technologies with wavefront engineering,” Jpn. J. Appl. Phys. 33, 6765–6773 (1994). [CrossRef]
  3. Y. C. Pati and T. Kailath, “Phase-shifting masks for microlithography: automated design and mask requirements,” J. Opt. Soc. Am. A11, 2438–2452 (1994). [CrossRef]
  4. H.-Y. Liu, L. Karklin, Y.-T. Wang, and Y. C. Pati, “The application of alternating phase-shifting masks to 140 nm gate patterning (II): mask design and manufacturing tolerances,” Proc. SPIE 3334, 2–14 (1998). [CrossRef]
  5. G. A. Cirino, R. D. Mansano, P. Verdonck, L. Cescato, and L. G. Neto, “Diffractive phase-shift lithography photomask operating in proximity printing mode,” Opt. Express 18, 16387–16405 (2010). [CrossRef] [PubMed]
  6. J. A. Rogers, K. E. Paul, R. J. Jackman, and G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658–2660 (1997). [CrossRef]
  7. J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett. 71, 3773–3775 (1997). [CrossRef]
  8. J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging profiles of light intensity in the near field: applications to phase-shift photolithography,” Appl. Opt. 37, 2145–2152 (1998). [CrossRef]
  9. Z.-Y. Li, Y. Yin, and Y. Xia, “Optimization of elastomeric phase masks for near-field photolithography,” Appl. Phys. Lett. 78, 2431–2433 (2001). [CrossRef]
  10. M. Fritze, B. M. Tyrrell, D. K. Astolfi, R. D. Lambert, D.-R. W. Yost, A. R. Forte, S. G. Cann, and B. D. Wheeler, “Subwavelength optical lithography with phase-shift photomasks,” Lincoln Lab. J. 14, 237–250 (2003).
  11. J. Maria, S. Jeon, and J. A. Rogers, “Nanopatterning with conformable phase masks,” J. Photochem. Photobiol., A 166, 149–154 (2004). [CrossRef]
  12. T. Horiuchi, T. Miyakawa, and S. Hosoda, “A new projection exposure method using a liquid crystal display as a switching matrix in place of a reticle,” Jpn. J. Appl. Phys. 39, 324–329 (2000). [CrossRef]
  13. M. Klosner and K. Jaina, “Massively parallel, large-area maskless lithography,” Appl. Phys. Lett. 84, 2880–2882(2004). [CrossRef]
  14. W.-F. Hsu and Y.-H. Su, “A far-field implementation of near-field phase-shift lithography using diffractive optical elements,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper FMC4.
  15. W.-F. Hsu and Y.-H. Su, “Implementation of far-field phase-shift lithography using diffractive optical elements,” Proc. SPIE 6462, 64621C (2007). [CrossRef]
  16. W.-F. Hsu, Y.-W. Chen, and Y.-H. Su, “Generation of phase-shift patterns in the optical far field and its applications,” Proc. SPIE 6832, 68320J (2007). [CrossRef]
  17. C. Bay, N. Hubner, J. Freeman, and T. Wilkinson, “Maskless photolithography via holographic optical projection,” Opt. Lett. 35, 2230–2232 (2010). [CrossRef] [PubMed]
  18. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Jena) 35, 237–246 (1972).
  19. C. Lu, X. K. Hu, I. V. Mitchell, and R. H. Lipson, “Diffraction element assisted lithography: pattern control for photonic crystal fabrication,” Appl. Phys. Lett. 86, 193110 (2005). [CrossRef]
  20. M. Paturzo, S. Grilli, S. Mailis, G. Coppola, M. Iodice, M. Gioffré, and P. Ferraro, “Flexible coherent diffraction lithography by tunable phase arrays in lithium niobate crystals,” Opt. Commun. 281, 1950–1953 (2008). [CrossRef]
  21. J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts & Company Publishers, CO, 2005), Chaps. 2 and 5.
  22. F. Wyrowski, “Diffractive optical elements: iterative calculation of quantized, blazed phase structures,” J. Opt. Soc. Am. A 7, 961–969 (1990). [CrossRef]
  23. H. Akahori, “Spectrum leveling by an iterative algorithm with a dummy area for synthesizing the kinoform,” Appl. Opt. 25, 802–811 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited