OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 20 — Jul. 10, 2011
  • pp: 3653–3657

Creating three-dimensional lattice patterns using programmable Dammann gratings

Jeffrey A. Davis, Ignacio Moreno, José Luis Martínez, Travis J. Hernandez, and Don M. Cottrell  »View Author Affiliations


Applied Optics, Vol. 50, Issue 20, pp. 3653-3657 (2011)
http://dx.doi.org/10.1364/AO.50.003653


View Full Text Article

Enhanced HTML    Acrobat PDF (988 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the creation of a three dimensional (3D) lattice of focus spots using a 3D Dammann grating structure. Such a 3D lattice of focus spots can be used for probing 3D structures or for creating 3D photonic crystal structures in optically sensitive media. Experimental results are included where the patterns are encoded onto a programmable liquid crystal display. We demonstrate the generation of five planar arrays each having 6 × 6 points surrounding another set of four planar arrays each having 5 × 5 points with a single pattern.

© 2011 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1965) Diffraction and gratings : Diffractive lenses
(090.1995) Holography : Digital holography
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Diffraction and Gratings

History
Original Manuscript: March 23, 2011
Revised Manuscript: May 28, 2011
Manuscript Accepted: May 30, 2011
Published: July 8, 2011

Citation
Jeffrey A. Davis, Ignacio Moreno, José Luis Martínez, Travis J. Hernandez, and Don M. Cottrell, "Creating three-dimensional lattice patterns using programmable Dammann gratings," Appl. Opt. 50, 3653-3657 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-20-3653


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269(2006). [CrossRef]
  2. M. Svalgaard, C. B. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV writing of buried singlemode channel wave-guides in Ge-doped silica films,” Electron. Lett. 30, 1401–1403 (1994). [CrossRef]
  3. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996). [CrossRef] [PubMed]
  4. G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide Bragg gratings in bulk fused silica,” Opt. Lett. 31, 2690–2691 (2006). [CrossRef] [PubMed]
  5. E. Bricchi, J. D. Mills, P. G. Kazansky, and B. G. Klappauf, “Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining,” Opt. Lett. 27, 2200–2202 (2002). [CrossRef]
  6. K. Yamada, W. Watanabe, Y. Li, and K. Itoh, “Multilevel phase-type diffractive lenses in silica glass induced by filamentation of femtosecond laser pulses,” Opt. Lett. 29, 1846–1849 (2004). [CrossRef] [PubMed]
  7. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008). [CrossRef] [PubMed]
  8. Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5, 1144–1148(2009). [PubMed]
  9. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009). [CrossRef] [PubMed]
  10. K. Kawamura, T. Ogawa, N. Sarukara, M. Hirano, and H. Hosono, “Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic methods using infrared femtosecond laser pulses,” Appl. Phys. B 71, 119–121(2000).
  11. T. Kondo, S. Matsuo, S. Juodkazis, and J. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001). [CrossRef]
  12. Y. Li, W. Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii, and Y. Jiang, “Holographic fabrication of multiple layers of grating inside soda-lime glass with femtosecond laser pulses,” Appl. Phys. Lett. 80, 1508–1510 (2002). [CrossRef]
  13. K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang, and G. K. Gan, “Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser,” Appl. Phys. A 77, 959–963 (2003). [CrossRef]
  14. T. M. Yan and H. K. Liu, “Holographic creation of photonic crystals,” Appl. Opt. 43, 4376–4384 (2004). [CrossRef] [PubMed]
  15. Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Opt. Express 12, 1908–1915 (2004). [CrossRef] [PubMed]
  16. J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86, 044102 (2005). [CrossRef]
  17. M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93, 041116 (2008). [CrossRef]
  18. S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31, 1705–1707 (2006). [CrossRef] [PubMed]
  19. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87, 031101(2005). [CrossRef]
  20. M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication of three-dimensional 1×4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam,” Opt. Express 18, 12136–12143 (2010). [CrossRef] [PubMed]
  21. H. Dammann and E. Klotz, “Coherent optical generation and inspection of two-dimensional periodic structures,” Opt. Acta 24, 505–515 (1977). [CrossRef]
  22. C. Zhou and L. Liu, “Numerical study of Dammann array illuminators,” Appl. Opt. 34, 5961–5969 (1995). [CrossRef] [PubMed]
  23. I. Moreno, J. A. Davis, D. M. Cottrell, N. Zhang, and X.-C. Yuan, “Encoding generalized phase functions on Dammann gratings,” Opt. Lett. 35, 1536–1538 (2010). [CrossRef] [PubMed]
  24. I. Moreno, J. L. Martínez, and J. A. Davis, “Two-dimensional polarization rotator using a twisted-nematic liquid crystal display,” Appl. Opt. 46, 881–887 (2007). [CrossRef] [PubMed]
  25. J. A. Davis and D. M. Cottrell, “Random mask encoding of multiplexed phase-only and binary phase-only filters,” Opt. Lett. 19, 496–498 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited