OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 21 — Jul. 20, 2011
  • pp: 3742–3749

Intermodal interferometer for strain and temperature sensing fabricated in birefringent boron doped microstructured fiber

G. Statkiewicz-Barabach, J. P. Carvalho, O. Frazão, J. Olszewski, P. Mergo, J. L. Santos, and W. Urbanczyk  »View Author Affiliations


Applied Optics, Vol. 50, Issue 21, pp. 3742-3749 (2011)
http://dx.doi.org/10.1364/AO.50.003742


View Full Text Article

Enhanced HTML    Acrobat PDF (889 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a compact in-line fiber interferometric sensor fabricated in a boron doped two-mode highly birefringent microstructured fiber using a CO 2 laser. The intermodal interference arises at the fiber output due to coupling between the fundamental and the first order modes occurring at two fiber tapers distant by a few millimeters. The visibility of intermodal interference fringes is modulated by a polarimetric differential signal and varies in response to measurand changes. The proposed interferometer was tested for measurements of the strain and temperature, respectively, in the range of 20 700 ° C and 0 17 mstrain . The sensitivity coefficients corresponding to fringe displacement and contrast variations are equal respectively for strain 2.51 nm / mstrain and 0.0256 1 / mstrain and for temperature 16.7 pm / ° C and 5.74 × 10 5 1 / ° C . This allows for simultaneous measurements of the two parameters by interrogation of the visibility and the displacement of interference fringes.

© 2011 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: February 1, 2011
Revised Manuscript: May 17, 2011
Manuscript Accepted: May 23, 2011
Published: July 11, 2011

Citation
G. Statkiewicz-Barabach, J. P. Carvalho, O. Frazão, J. Olszewski, P. Mergo, J. L. Santos, and W. Urbanczyk, "Intermodal interferometer for strain and temperature sensing fabricated in birefringent boron doped microstructured fiber," Appl. Opt. 50, 3742-3749 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-21-3742


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Y. Fu, Chuang Wu, M. L. V. Tse, L. Zhang, K.-C. Davis Cheng, H. Y. Tam, B.-O. Guan, and C. Lu, “High pressure sensor based on photonic crystal fiber for downhole application,” Appl. Opt. 49, 2639–2643 (2010). [CrossRef]
  2. X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007). [CrossRef]
  3. O. Frazăo, J. M. Baptista, and J. L. Santos, “Temperature-independent strain sensor based on a Hi-Bi photonic crystal fiber loop mirror,” IEEE Sens. J. 7, 1453–1455 (2007). [CrossRef]
  4. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854–858 (2001). [CrossRef]
  5. J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15, 1120–1128 (2004). [CrossRef]
  6. M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16, 8427–8432 (2008). [CrossRef] [PubMed]
  7. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12, 4080–4087 (2004). [CrossRef] [PubMed]
  8. O. Frazão, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2, 449–459 (2008). [CrossRef]
  9. G. Statkiewicz, T. Martynkien, and W. Urbanczyk, “Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,” Opt. Commun. 241, 339–348 (2004). [CrossRef]
  10. J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, “Simple all-microstructured-optical-fiber interferometer built via fusion splicing,” Opt. Express 15, 1491–1496 (2007). [CrossRef] [PubMed]
  11. W. J. Bock, T. Eftimov, P. Mikulic, and J. Chen, “Novel fiber sensor based on in-line core-cladding intermodal interferometer and photonic crystal fiber,” in Proceedings of XIX IMEKO World Congress Fundamental and Applied Metrology (IMEKO, 2009), pp. 65–68.
  12. Y. Jung, S. Lee, B. H. Lee, and K. Oh, “Ultracompact in-line broadband Mach-Zehnder interferometer using a composite leaky hollow-optical-fiber waveguide,” Opt. Lett. 33, 2934–2936 (2008). [CrossRef] [PubMed]
  13. J. Villatoro, V. Finazzi, G. Badenes, and V. Pruneri, “Highly sensitive sensors based on photonic crystal fiber modal interferometers,” J. Sensors 2009, 747803 (2009).
  14. V. Minkovich, J. Villatoro, D. Monzon-Hernandez, S. Calixto, A. Sotsky, and L. Sotskaya, “Holey fiber tapers with resonance transmission for high-resolution refractive index sensing,” Opt. Express 13, 5087–5092 (2005). [CrossRef]
  15. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15, 5711–5720 (2007). [CrossRef] [PubMed]
  16. G. Statkiewicz-Barabach, J. Olszewski, M. Napiorkowski, G. Golojuch, T. Martynkien, K. Tarnowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Polarizing photonic crystal fiber with low index inclusion in the core,” J. Opt. 12, 075402 (2010). [CrossRef]
  17. M. Szpulak, W. Urbanczyk, E. Serebryannikov, A. Zheltikov, A. Hochman, Y. Leviatan, R. Kotynski, and K. Panajotov, “Comparison of different methods for rigorous modeling of photonic crystal fibers,” Opt. Express 14, 5699–5714 (2006). [CrossRef] [PubMed]
  18. A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman and Hall, 1983).
  19. P. Hlubina, “White-light spectral interferometry to measure intermodal dispersion in two-mode elliptical-core optical fibres,” Opt. Commun. 218, 283–289 (2003). [CrossRef]
  20. J. Villatoro, V. P. Minkovich, and D. Monzon-Hernandez, “Temperature-independent strain sensor made from tapered holey optical fiber,” Opt. Lett. 31, 305–307 (2006). [CrossRef] [PubMed]
  21. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited