OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 21 — Jul. 20, 2011
  • pp: 3860–3864

Tunable optical properties of a two-dimensional square-lattice superconductor-dielectric Bragg reflector

Huang-Ming Lee, Jia-Hong Shyu, Lance Horng, and Jong-Ching Wu  »View Author Affiliations

Applied Optics, Vol. 50, Issue 21, pp. 3860-3864 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (502 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We numerically analyze the optical properties of a two-dimensional (2D) superconducting Bragg reflector (SBR) using the finite element method in conjunction with a two-fluid model. It is found that the wavelength-dependent reflectance spectra of the proposed 2D SBR are strongly dependent on the polarizations of incident light and can be parametrically tuned by the system temperature and the geometric parameters of embedded dielectric rods. Taking advantage of the dispersive superconductor with its zero-refractive index characteristic and the structural periodicity of the proposed superconducting structure, narrow passband filters can be generated near the threshold wavelength. Furthermore, the narrow passband features of the 2D SBR are found to be sustained up to a very large angle of incidence. The extraordinary optical properties imply that the proposed 2D SBR may be applied to the design of an omnidirectional narrowband transmission filter.

© 2011 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(160.4760) Materials : Optical properties
(160.5298) Materials : Photonic crystals

ToC Category:

Original Manuscript: April 6, 2011
Revised Manuscript: June 7, 2011
Manuscript Accepted: June 13, 2011
Published: July 11, 2011

Huang-Ming Lee, Jia-Hong Shyu, Lance Horng, and Jong-Ching Wu, "Tunable optical properties of a two-dimensional square-lattice superconductor-dielectric Bragg reflector," Appl. Opt. 50, 3860-3864 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. P. Stanley, R. Houdré, U. Oesterle, M. Gaihanou, and M. Ilegems, “Ultrahigh finesse microcavity with distributed Bragg reflectors,” Appl. Phys. Lett. 65, 1883–1885 (1994). [CrossRef]
  2. L. Pavesi and P. Dubos, “Random porous silicon multilayers: application to distributed Bragg reflectors and interferential Fabry–Pérot filters,” Semicond. Sci. Technol. 12, 570–575(1997). [CrossRef]
  3. H. M. Ng, D. Doppalapudi, E. Iliopoulos, and T. D. Moustakas, “Distributed Bragg reflectors based on AlN/GaN multilayers,” Appl. Phys. Lett. 74, 1036–1038 (1999). [CrossRef]
  4. M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007). [CrossRef]
  5. K. I. Miyazaki, D. G. Kim, T. Kawase, M. Kameda, and M. Nakayama, “Effects of distributed Bragg reflectors on temporal stability of CuCl microcavities,” Jpn. J. Appl. Phys. 49, 042802 (2010). [CrossRef]
  6. B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005). [CrossRef]
  7. A. Hosseini and Y. Massoud, “A low-loss metal–insulator–metal plasmonic Bragg reflector,” Opt. Express 14, 11318–11323 (2006). [CrossRef]
  8. L. Zhou, X. Q. Yu, and Y. Y. Zhu, “Propagation and dual-localization of surface plasmon polaritons in a quasiperiodic metal heterowaveguide,” Appl. Phys. Lett. 89, 051901 (2006). [CrossRef]
  9. J. J. Xu, H. P. Fang, and Z. F. Lin, “Expanding high reflection range in a dielectric multilayer reflector by disorder and inhomogeneity,” J. Phys. D 34, 445–449 (2001). [CrossRef]
  10. C. H. R. Ooi and C. H. Kam, “Echo and ringing of optical pulse in finite photonic crystal with superconductor and dispersive dielectric,” J. Opt. Soc. Am. B 27, 458–463 (2010). [CrossRef]
  11. V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, Y. Chen, S. Wang, and N. I. Zheludev, “Temperature control of Fano resonances and transmission in superconducting metamaterials,” Opt. Express 18, 9015–9019 (2010). [CrossRef] [PubMed]
  12. L. Feng, X. P. Liu, Y. F. Tang, Y. F. Chen, J. Zi, S. N. Zhu, and Y. Y. Zhu, “Tunable negative refractions in two-dimensional photonic crystals with superconductor constituents,” J. Appl. Phys. 97, 073104 (2005). [CrossRef]
  13. A. Pimenov, A. Loidl, P. Przyslupski, and B. Dabrowski, “Negative refraction in ferromagnet-superconductor superlattices,” Phys. Rev. Lett. 95, 247009 (2005). [CrossRef] [PubMed]
  14. H. M. Lee, C. Y. Lin, L. Horng, and J. C. Wu, “Tunable resonant spectra through nanometer niobium grating on silicon nitride membrane,” J. Appl. Phys. 107, 09E119 (2010). [CrossRef]
  15. H. M. Lee and J. C. Wu, “Transmittance spectra in one-dimensional superconductor-dielectric photonic crystal,” J. Appl. Phys. 107, 09E149 (2010). [CrossRef]
  16. A. H. Aly, H. T. Hsu, T. J. Yang, C. J. Wu, and C. K. Hwangbo, “Extraordinary optical properties of a superconducting periodic multilayer in near-zero-permittivity operation range,” J. Appl. Phys. 105, 083917 (2009). [CrossRef]
  17. A. Mishra, S. K. Awasthi, S. K. Srivastava, U. Malaviya, and S. P. Ojha, “Tunable and omnidirectional filters based on one-dimensional photonic crystals composed of single-negative materials,” J. Opt. Soc. Am. B 28, 1416–1422 (2011). [CrossRef]
  18. Y. Chen, “Tunable omnidirectional multichannel filters based on dual-defective photonic crystals containing negative-index materials,” J. Phys. D: Appl. Phys. 42, 075106 (2009). [CrossRef]
  19. K. Y. Xu, X. Zheng, C. L. Li, and W. L. She, “Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,” Phys. Rev. E 71, 066604(2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited