OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 21 — Jul. 20, 2011
  • pp: 4017–4023

Single-pulse measurement of wind velocities using an Er:Yb:glass coherent laser radar

Matthew C. Heintze, Nick W. H. Chang, Francois Jeanneret, Jesper Munch, David J. Ottaway, and Peter J. Veitch  »View Author Affiliations

Applied Optics, Vol. 50, Issue 21, pp. 4017-4023 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (543 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Many wind-field mapping applications require range-resolved atmospheric velocity measurements at long range and/or with a temporal resolution sufficient to investigate turbulence. We argue that this capability can be achieved only by coherent laser radar systems that transmit energetic ( > 1 mJ ) pulses. We describe such a system and describe single-pulse measurement of the range-resolved line-of-sight velocities, and show that the instrument-limited reproducibility of the measurements is 0.4 ms 1 .

© 2011 Optical Society of America

OCIS Codes
(140.3500) Lasers and laser optics : Lasers, erbium
(140.3540) Lasers and laser optics : Lasers, Q-switched
(280.1100) Remote sensing and sensors : Aerosol detection
(280.3340) Remote sensing and sensors : Laser Doppler velocimetry
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 17, 2011
Revised Manuscript: May 26, 2011
Manuscript Accepted: June 1, 2011
Published: July 14, 2011

Matthew C. Heintze, Nick W. H. Chang, Francois Jeanneret, Jesper Munch, David J. Ottaway, and Peter J. Veitch, "Single-pulse measurement of wind velocities using an Er:Yb:glass coherent laser radar," Appl. Opt. 50, 4017-4023 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. M. Huffaker, A. V. Jelalian, and J. A. L. Thomson, “Laser-Doppler system for detection of aircraft trailing vorticies,” Proc. IEEE 58, 322–326 (1970). [CrossRef]
  2. S. Hannon and J. Thomson, “Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar,” J. Mod. Opt. 41, 2175–2196 (1994). [CrossRef]
  3. J. W. Bilbro and W. W. Vaughan, “Wind field measurements in the non-precipitous regions surrounding severe storms by an airborne pulsed Doppler lidar system,” Bull. Am. Meteorol. Soc. 59, 1095–1100 (1978). [CrossRef]
  4. J. F. F. Hall, R. M. Huffaker, R. M. Hardesty, M. E. Jackson, T. R. Lawrence, M. J. Post, R. A. Richter, and B. F. Weber, “Wind measurement accuracy of the NOAA pulsed infrared Doppler lidar,” Appl. Opt. 23, 2503–2506 (1984). [CrossRef] [PubMed]
  5. J. G. Hawley, R. Targ, S. W. Henderson, C. P. Hale, M. J. Kavaya, and D. Moerder, “Coherent launch-site atmospheric wind sounder: Theory and experiment,” Appl. Opt. 32, 4557–4568 (1993). [CrossRef] [PubMed]
  6. R. Frehlich, S. M. Hannon, and S. W. Henderson, “Performance of a 2 μm coherent Doppler lidar for wind measurements,” J. Atmos. Ocean. Technol. 11, 1517–1528 (1994). [CrossRef]
  7. C. J. Karlsson, F. A. A. Olsson, D. Letalick, and M. Harris, “All-fiber multifunction continuous-wave coherent laser radar at 1.55 μm for range, speed, vibration, and wind measurements,” Appl. Opt. 39, 3716–3726 (2000). [CrossRef]
  8. C. Werner, P. H. Flamant, O. Reitebuch, F. Kopp, J. Streicher, S. Rahm, E. Nagel, M. Klier, H. Herrmann, C. Loth, P. Delville, P. Droinski, B. Romand, C. Boitel, D. Oh, M. Lopez, M. Meissonnier, D. Bruneau, and A. Dabas, “Wind infrared Doppler lidar instrument,” Opt. Eng. 40, 115–125 (2001). [CrossRef]
  9. T. Yanagisawa, K. Asaka, K. Hamazu, and Y. Hirano, “11 mJ, 15 Hz single-frequency diode-pumped Q-switched Er:Yb:phosphate glass laser,” Opt. Lett. 26, 1262–1264 (2001). [CrossRef]
  10. “Safety of laser products—Part 1: Equipment classification, requirements and users guide,” IEC Publ. IEC 60825-1(International Electrotechnical Commission2001).
  11. S. M. Hannon, “Wind resource assessment using long range pulsed Doppler lidar,” in 15th Coherent Laser Radar Conference 2009 (CLRC XV) (Curran, 2009), pp. 59–62.
  12. N. W. H. Chang, N. Simakov, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm,” Opt. Express 18, 13673–13678 (2010). [CrossRef] [PubMed]
  13. N. W. H. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6 μm,” IEEE J. Quantum Electron. 46, 1039–1042 (2010). [CrossRef]
  14. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm,” Opt. Lett. 31, 754–756 (2006). [CrossRef] [PubMed]
  15. D. W. Chen, M. Birnbaum, P. M. Belden, T. S. Rose, and S. M. Beck, “Multiwatt continuous-wave and Q-switched Er:YAG lasers at 1645 nm: performance issues,” Opt. Lett. 34, 1501–1503 (2009). [CrossRef] [PubMed]
  16. S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, “Resonantly-pumped eyesafe erbium lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 645–657 (2005). [CrossRef]
  17. S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Compact all-fiber pulsed coherent Doppler lidar system for wind sensing,” Appl. Opt. 46, 1953–1962 (2007). [CrossRef] [PubMed]
  18. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25, 442–444 (2000). [CrossRef]
  19. G. N. Pearson, P. J. Roberts, J. R. Eacock, and M. Harris, “Analysis of the performance of a coherent pulsed fiber lidar for aerosol backscatter applications,” Appl. Opt. 41, 6442–6450(2002). [CrossRef] [PubMed]
  20. G. Humbert, J. C. Knight, G. Bouwmans, P. St. J. Russell, D. P. Williams, P. J. Roberts, and B. J. Malinga, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12, 1477–1484 (2004). [CrossRef] [PubMed]
  21. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998). [CrossRef]
  22. W. S. Wong, X. Peng, J. M. McLaughlin, and L. Dong, “Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers,” Opt. Lett. 30, 2855–2857 (2005). [CrossRef] [PubMed]
  23. M. Hildebrandt, M. Frede, P. Kwee, B. Willke, and D. Kracht, “Single-frequency master-oscillator photonic crystal fiber amplifier with 148 W output power,” Opt. Express 14, 11071–11076 (2006). [CrossRef] [PubMed]
  24. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Fox, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16, 13240–13266 (2008). [CrossRef] [PubMed]
  25. A. McGrath, J. Munch, G. Smith, and P. J. Veitch, “Injection-seeded, single-frequency, Q-switched erbium:glass laser for remote sensing,” Appl. Opt. 37, 5706–5709 (1998). [CrossRef]
  26. A. McGrath, J. Munch, and P. J. Veitch, “Coherent laser radar using an injection seeded Q-switched erbium:glass laser,” in Proceedings of the Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, 1999), pp. 234–237.
  27. K. Asaka, T. Yanagisawa, and Y. Hirano, “1.5 μm coherent lidar using injection-seeded, LD pumped, Er:Yb:glass laser,” in Proceedings of the Tenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, 1999), pp. 198–201.
  28. T. Yanagisawa, K. Asaka, and Y. Hirano, “1.5 μm coherent lidar using a single longitudinal-mode diode-pumped Q-switched Er:Yb:glass laser,” in Conference on Lasers and Electro-Optics (CLEO 2000), Technical Digest, Post conference ed., TOPS (Opt. Soc. America, 2000), Vol.  39, pp. 438–439.
  29. T. Yanagsawa, K. Asaka, and Y. Hirano, “10.9 mJ single frequency diode-pumped Q-switched Er:Yb:glass laser for coherent Doppler lidar,” Proc. SPIE 4153, 86–92 (2001). [CrossRef]
  30. T. Rutten, P. J. Veitch, and J. Munch, “Injection mode-locked guide star laser concept and design verification experiments,” Opt. Express 15, 2369–2374 (2007). [CrossRef] [PubMed]
  31. P. J. Veitch, International Patent PCT/AU2006/00185 (2008).
  32. T. P. Rutten, P. J. Veitch, and J. Munch, “Efficient pulse stretching of Q-switched lasers,” IEEE J. Quantum Electron. 44, 911–915 (2008). [CrossRef]
  33. J. Richards and A. McInnes, “Versatile, efficient, diode-pumped miniature slab laser,” Opt. Lett. 20, 371–373 (1995). [CrossRef] [PubMed]
  34. A. McInnes and J. Richards, “Thermal effects in a coplanar-pumped folded-zigzag slab laser,” IEEE J. Quantum Electron. 32, 1243–1252 (1996). [CrossRef]
  35. W. Risk, “Modelling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5, 1412–1423 (1988). [CrossRef]
  36. P. Laporta and M. Brussard, “Design criteria for mode size optimization in diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 27, 2319–2326 (1991). [CrossRef]
  37. P. Laporta, S. Longhi, S. Taccheo, and O. Svelto, “Analysis and modeling of the erbium-ytterbium glass laser,” Opt. Commun. 100, 311–321 (1993). [CrossRef]
  38. N. Hodgson and H. Weber, Laser Resonators and Beam Propagation: Fundamentals, Advanced Concepts and Applications (Springer, 2005).
  39. J.-P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidar based on fiber technology,” C. R. Physique 7, 213–223 (2006). [CrossRef]
  40. A. E. Siegman, Lasers (University Science Books, 1986).
  41. A. Belmonte, “Analyzing the efficiency of a practical heterodyne lidar in the turbulent atmosphere: telescope parameters,” Opt. Express 11, 2041–2046 (2003). [CrossRef] [PubMed]
  42. J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms and Applications (Prentice-Hall, 1996).
  43. C. W. De Silva, Vibration and Shock Handbook (CRC Press, 2005). [CrossRef]
  44. S. Gade and H. Herlufsen, “Use of weighting functions in DFT/FFT analysis (Part 1),” Tech. Rep.3, Bruel Kjaer (1987).
  45. R. A. Vincent, S. Dullaway, A. MacKinnon, I. M. Reid, F. Zink, P. T. May, and B. H. Johnson, “A VHF boundary layer radar: First results,” Radio Sci. 33, 845–860 (1998). [CrossRef]
  46. R. Hardesty, R. Keeler, M. J. Post, and R. Richter, “Characteristics of coherent lidar returns from calibration targets and aerosols,” Appl. Opt. 20, 3763–3769 (1981). [CrossRef] [PubMed]
  47. P. H. Flamant, R. T. Menzies, and M. J. Kavaya, “Evidence for speckle effects on pulsed CO2 lidar signal returns from remote targets,” Appl. Opt. 23, 1412–1417 (1984). [CrossRef] [PubMed]
  48. S. R. Murty, “Aerosol speckle effects on atmospheric pulsed lidar backscattered signals,” Appl. Opt. 28, 875–878 (1989). [CrossRef] [PubMed]
  49. K. P. Chan and D. K. Killinger, “Short pulse coherent Doppler Nd:YAG lidar,” Opt. Eng. 30, 49–54 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited