OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 21 — Jul. 20, 2011
  • pp: 4048–4053

Proposal for enhancing the transmission efficiency of photonic crystal 60 ° waveguide bends by means of optofluidic infiltration

Sarah Bakhshi, Mohammad K. Moravvej-Farshi, and Majid Ebnali-Heidari  »View Author Affiliations


Applied Optics, Vol. 50, Issue 21, pp. 4048-4053 (2011)
http://dx.doi.org/10.1364/AO.50.004048


View Full Text Article

Enhanced HTML    Acrobat PDF (1067 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We are proposing a procedure to enhance the transmission efficiency of 60 ° photonic crystal (PhC) waveguide bends by means of selective optofluidic infiltration of an air hole, which is created as a point defect at the center of the conventional 60 ° PhC bend. Numerical studies demonstrate that by varying the defect radius and indices of optical fluids, one may enhance the bend transmission level and tune its 3 dB bandwidth over a substantial range of 88 138 nm . In order to perform the numerical simulations, we have used two-dimensional (2D) finite difference time domain plane wave method, keeping in mind that the spectral features obtained by these 2D calculations are about 15% redshifted from those of real three-dimensional structures.

© 2011 Optical Society of America

OCIS Codes
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(220.4241) Optical design and fabrication : Nanostructure fabrication
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: February 9, 2011
Revised Manuscript: April 6, 2011
Manuscript Accepted: June 3, 2011
Published: July 15, 2011

Citation
Sarah Bakhshi, Mohammad K. Moravvej-Farshi, and Majid Ebnali-Heidari, "Proposal for enhancing the transmission efficiency of photonic crystal 60° waveguide bends by means of optofluidic infiltration," Appl. Opt. 50, 4048-4053 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-21-4048


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  2. S. G. Johnson, P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8221 (2000). [CrossRef]
  3. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of linedefect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001). [CrossRef] [PubMed]
  4. A. Talneau, L. Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 μm,” Appl. Phys. Lett. 80, 547–549 (2002). [CrossRef]
  5. A. Mekis, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996). [CrossRef] [PubMed]
  6. P. F. Xing, P. I. Borel, L. H. Frandsen, A. Harpøth, and M. Kristensen, “Optimization of bandwidth in 60_photonic crystal waveguide bends,” Opt. Commun. 248, 179–184 (2005). [CrossRef]
  7. M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett. 97, 157403 (2006). [CrossRef] [PubMed]
  8. M. Silveirinha and N. Engheta, “Transporting an image through a subwavelength hole,” Phys. Rev. Lett. 102, 103902(2009). [CrossRef] [PubMed]
  9. D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006). [CrossRef] [PubMed]
  10. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photon. 1, 106–114 (2007). [CrossRef]
  11. K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999). [CrossRef]
  12. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932–934 (1999). [CrossRef]
  13. B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84, 846–848 (2004). [CrossRef]
  14. B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. M. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85, 360–362 (2004). [CrossRef]
  15. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett. 31, 59–61 (2006). [CrossRef] [PubMed]
  16. F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89, 211117(2006). [CrossRef]
  17. C. L. Smith, U. Bog, S. Tomljenovic-Hanic, M. W. Lee, D. K. Wu, L. O’Faolain, C. Monat, C. Grillet, T. F. Krauss, C. Karnutsch, R. C. McPhedran, and B. J. Eggleton, “Reconfigurable microfluidic photonic crystal slab cavities,” Opt. Express 16, 15887–15896 (2008). [CrossRef] [PubMed]
  18. U. Bog, C. L. C. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Grillet, C. Monat, L. O’Faolain, C. Karnutsch, T. F. Krauss, R. C. McPhedran, and B. J. Eggleton, “High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures,” Opt. Lett. 33, 2206–2208 (2008). [CrossRef] [PubMed]
  19. M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009). [CrossRef] [PubMed]
  20. M. Ebnali-Heidari, C. Monat, C. Grillet, and M. K. Moravvej-Farshi, “A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration,” Opt. Express 17, 18340–18353(2009). [CrossRef] [PubMed]
  21. H. Kurt and D. S. Citrin, “Reconfigurable multimode photonic-crystal waveguides,” Opt. Express 16, 11995–12001(2008). [CrossRef] [PubMed]
  22. C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91, 121103 (2007). [CrossRef]
  23. A. Lavrinenko, P. Borel, L. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, T. Niemi, and H. Chong, “Comprehensive FDTD modelling of photonic crystal waveguide components,” Opt. Express 12, 234–248 (2004). [CrossRef] [PubMed]
  24. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Modeling the Flow of Light (Princeton University Press, 2008).
  25. M. K. Moghaddami, M. M. Mirsalehi, and A. R. Tari, “A 60° photonic crystal waveguide bend with improved transmission characteristics,” Opt. Appl. 39, 307–317 (2009).
  26. G. Ren, W. Zheng, Y. Zhang, K. Wang, X. Du, M. Xing, and L. Chen, “Mode analysis and design of a low-loss photonic crystal 60(°) waveguide bend,” J. Lightwave Technol. 26, 2215–2218 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited