OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 21 — Jul. 20, 2011
  • pp: 4174–4179

Generation of dark hollow femtosecond pulsed beam by phase-only liquid crystal spatial light modulator

Yongming Nie, Haotong Ma, Xiujian Li, Wenhua Hu, and Jiankun Yang  »View Author Affiliations


Applied Optics, Vol. 50, Issue 21, pp. 4174-4179 (2011)
http://dx.doi.org/10.1364/AO.50.004174


View Full Text Article

Enhanced HTML    Acrobat PDF (646 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on the refractive laser beam shaping system, the dark hollow femtosecond pulse beam shaping technique with a phase-only liquid crystal spatial light modulator (LC-SLM) is demonstrated. The phase distribution of the LC-SLM is derived by the energy conservation and constant optical path principle. The effects of the shaping system on the temporal properties, including spectral phase distribution and bandwidth of the femtosecond pulse, are analyzed in detail. Experimental results show that the hollow intensity distribution of the output pulsed beam can be maintained much at more than 1200 mm . The spectral phase of the pulse is changed, and the pulse width is expanded from 199 to 230 fs , which is caused by the spatial–temporal coupling effect. The coupling effect mainly depends on the phase-only LC-SLM itself, not on its loaded phase distribution. The experimental results indicate that the proposed shaping setup can generate a dark hollow femtosecond pulsed beam effectively, because the temporal Gaussian waveform is unchanged.

© 2011 Optical Society of America

OCIS Codes
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(140.3300) Lasers and laser optics : Laser beam shaping
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 10, 2011
Revised Manuscript: June 22, 2011
Manuscript Accepted: June 22, 2011
Published: July 19, 2011

Citation
Yongming Nie, Haotong Ma, Xiujian Li, Wenhua Hu, and Jiankun Yang, "Generation of dark hollow femtosecond pulsed beam by phase-only liquid crystal spatial light modulator," Appl. Opt. 50, 4174-4179 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-21-4174


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. McGloin, G. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Applications of spatial light modulators in atom optics,” Opt. Express 11, 158–166 (2003). [CrossRef] [PubMed]
  2. Y. Baykal, “Log-amplitude and phase fluctuations of higher-order annular laser beams in a turbulent medium,” J. Opt. Soc. Am. A 22, 672–679 (2005). [CrossRef]
  3. H. T. Eyyuboglu and Y. Baykal, “Scintillations of cos-Gaussian and annular beams,” J. Opt. Soc. Am. A 24, 156–162 (2007). [CrossRef]
  4. B. Glushko, B. Kryzhanovsky, and D. Sarkisyan, “Self-phase-matching mechanism for efficient harmonic generation processes in a ring pump beam geometry,” Phys. Rev. Lett. 71, 243–246 (1993). [CrossRef] [PubMed]
  5. C. Altucci, R. Bruzzese, D. D’Antuoni, C. D. Lisio, and S. Solimeno, “Harmonic generation in gases by use of Bessel–Gauss laser beams,” J. Opt. Soc. Am. B 17, 34–42 (2000). [CrossRef]
  6. M. Carbon, “Laser beam shaping in space using adaptive optics,” Proc. SPIE 5087, 83–86 (2003). [CrossRef]
  7. Z. J. Liu, J. M. Dai, X. G. Sun, and S. T. Liu, “Generation of hollow Gaussian beam by phase-only filtering,” Opt. Express 16, 19926–19933 (2008). [CrossRef] [PubMed]
  8. H. T. Eyyuboglu, C. Arpali, and Y. Baykal, “Flat topped beams and their characteristics in turbulent media,” Opt. Express 14, 4196–4207 (2006). [CrossRef] [PubMed]
  9. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef] [PubMed]
  10. R. Grunwald, U. Griebner, F. Tschirschwitz, E. T. J. Nibbering, and T. Elsaesser, “Generation of femtosecond Bessel beams with microaxicon arrays,” Opt. Lett. 25, 981–983 (2000). [CrossRef]
  11. H. T. Ma, Z. J. Liu, X. J. Xu, X. L. Wang, Y. X. Ma, and P. Zhou, “Adaptive generation of a near-diffraction-limited square flattop beam with dual phase only liquid crystal spatial light modulators,” J. Opt. 13, 015707 (2011). [CrossRef]
  12. H. T. Ma, H. C. Zhang, P. Zhou, X. L. Wang, Y. X. Ma, F. J. Xi, X. J. Xu, and Z. J. Liu, “Adaptive conversion of multimode beam to near diffraction-limited flattop beam based on dual phase-only liquid-crystal spatial light modulators,” Opt. Express 18, 27723–27730 (2010). [CrossRef]
  13. H. T. Ma, Z. J. Liu, X. J. Xu, S. H. Wang, and C. H. Liu, “Near-diffraction-limited flattop laser beam adaptively generated by stochastic parallel gradient descent algorithm,” Opt. Lett. 35, 2973–2975 (2010). [CrossRef] [PubMed]
  14. H. T. Ma, Z. J. Liu, P. Zhou, X. L. Wang, Y. X. Ma, and X. J. Xu, “Generation of flat-top beam with phase-only liquid crystal spatial light modulators,” J. Opt. 12, 045704(2010). [CrossRef]
  15. H. T. Ma, P. Zhou, X. L. Wang, Y. X. Ma, F. J. Xi, X. J. Xu, and Z. J. Liu, “Near-diffraction-limited annular flattop beam shaping with dual phase only liquid crystal spatial light modulators,” Opt. Express 18, 8251–8260 (2010). [CrossRef] [PubMed]
  16. C. Hnatovsky, V. G. Shvedov, W. Krolikowski, and A. V. Rode1, “Materials processing with a tightly focused femtosecond laser vortex pulse,” Opt. Lett. 35, 3417–3419 (2010). [CrossRef] [PubMed]
  17. D. Walter, T. Pfeifer, C. Winterfeldt, R. Kemmer, R. Spitzenpfeil, G. Gerber, and C. Spielmann, “Adaptive spatial control of fiber modes and their excitation for high-harmonic generation,” Opt. Express 14, 3433–3442 (2006). [CrossRef] [PubMed]
  18. V. E. Peet, and R. V. Tsubin, “Multiphoton ionization and optical breakdown of xenon in annular laser beams,” Opt. Commun. 134, 69–74 (1997). [CrossRef]
  19. Y. J. Cai, X. H. Lu, and Q. Ling, “Hollow Gaussian beams and their propagation properties,” Opt. Lett. 28, 1084–1086(2003). [CrossRef] [PubMed]
  20. H. S. Lee, B. W. Atewart, K. Choi, and H. Fenichel, “Holographic nondiverging hollow beam,” Phys. Rev. A 49, 4922–4927 (1994). [CrossRef] [PubMed]
  21. X. Wang and M. G. Littman, “Laser cavity for generation of variable-radius rings of light,” Opt. Lett. 18, 767–768(1993). [CrossRef] [PubMed]
  22. C. L. Zhao, Y. J. Cai, F. Wang, X. H. Liu, and Y. Z. Wang, “Generation of a high-quality partially coherent dark hollow beam with a multimode fiber,” Opt. Lett. 33, 1389–1391 (2008). [CrossRef] [PubMed]
  23. J. A. Hoffnagle and C. M. Jefferson, “Design and performance of a refractive optical system that converts a Gaussian to a flattop beam,” Appl. Opt. 39, 5488–5499 (2000). [CrossRef]
  24. M. Arif, M. M. Hossain, A. A. S. Awwal, and M. N. Islam, “Two-element refracting system for annular Gaussian-to-Bessel beam transformation,” Appl. Opt. 37, 4206–4209 (1998). [CrossRef]
  25. F. K. Fatemi, M. Bashkansky, and Z. Dutton, “Dynamic high-speed spatial manipulation of cold atoms using acousto-optic and spatial light modulation,” Opt. Express 15, 3589–3596(2007). [CrossRef] [PubMed]
  26. R. M. Koehl, T. Hattori, and K. A. Nelson, “Automated spatial and temporal shaping of femtosecond pulses,” Opt. Commun. 157, 57–61 (1998). [CrossRef]
  27. J. L. Kreuzer, “Coherent light optical system yielding an output beam of desired intensity distribution at a desired equi-phase surface,” U.S. patent 3,476,463 (4 November 1969).
  28. Z. J. Liu, H. F. Zhao, J. L. Liu, J. Lin, M. A. Ahmad, and S. T. Liu, “Generation of hollow Gaussian beams by spatial filtering,” Opt. Lett. 32, 2076–2078 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited