OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 21 — Jul. 20, 2011
  • pp: 4189–4197

Simultaneous multidimensional deformation measurements using digital holographic moiré

Gannavarpu Rajshekhar, Sai Siva Gorthi, and Pramod Rastogi  »View Author Affiliations


Applied Optics, Vol. 50, Issue 21, pp. 4189-4197 (2011)
http://dx.doi.org/10.1364/AO.50.004189


View Full Text Article

Enhanced HTML    Acrobat PDF (1934 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper proposes an elegant technique for the simultaneous measurement of in-plane and out-of-plane displacements of a deformed object in digital holographic interferometry. The measurement relies on simultaneously illuminating the object from multiple directions and using a single reference beam to interfere with the scattered object beams on the CCD plane. Numerical reconstruction provides the complex object wave-fields or complex amplitudes corresponding to prior and postdeformation states of the object. These complex amplitudes are used to generate the complex reconstructed interference field whose real part constitutes a moiré interference fringe pattern. Moiré fringes encode information about multiple phases which are extracted by introducing a spatial carrier in one of the object beams and subsequently using a Fourier transform operation. The information about the in-plane and out-of-plane displacements is then ascertained from the estimated multiple phases using sensitivity vectors of the optical configuration.

© 2011 Optical Society of America

OCIS Codes
(120.2880) Instrumentation, measurement, and metrology : Holographic interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: April 19, 2011
Revised Manuscript: June 3, 2011
Manuscript Accepted: June 5, 2011
Published: July 19, 2011

Citation
Gannavarpu Rajshekhar, Sai Siva Gorthi, and Pramod Rastogi, "Simultaneous multidimensional deformation measurements using digital holographic moiré," Appl. Opt. 50, 4189-4197 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-21-4189


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Schnars and W. P. O. Juptner, “Digital recording and reconstruction of holograms in hologram interferometry and shearography,” Appl. Opt. 33, 4373–4377 (1994). [CrossRef] [PubMed]
  2. G. Pedrini and H. J. Tiziani, “Digital double-pulse holographic interferometry using Fresnel and image plane holograms,” Measurement 15, 251–260 (1995). [CrossRef]
  3. G. Pedrini and H. J. Tiziani, “Quantitative evaluation of two-dimensional dynamic deformations using digital holography,” Opt. Laser Technol. 29, 249–256 (1997). [CrossRef]
  4. G. Pedrini, Y. L. Zou, and H. J. Tiziani, “Simultaneous quantitative evaluation of in-plane and out-of-plane deformations by use of a multidirectional spatial carrier,” Appl. Opt. 36, 786–792 (1997). [CrossRef] [PubMed]
  5. S. Schedin, G. Pedrini, H. J. Tiziani, and F. M. Santoyo, “Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography,” Appl. Opt. 38, 7056–7062 (1999). [CrossRef]
  6. P. Picart, E. Moisson, and D. Mounier, “Twin-sensitivity measurement by spatial multiplexing of digitally recorded holograms,” Appl. Opt. 42, 1947–1957 (2003). [CrossRef] [PubMed]
  7. C. Kohler, M. R. Viotti, and J. G. Armando Albertazzi, “Measurement of three-dimensional deformations using digital holography with radial sensitivity,” Appl. Opt. 49, 4004–4009 (2010). [CrossRef] [PubMed]
  8. E. Kolenovic, W. Osten, R. Klattenhoff, S. Lai, C. Von Kopylow, and W. Juptner, “Miniaturized digital holography sensor for distal three-dimensional endoscopy,” Appl. Opt. 42, 5167–5172 (2003). [CrossRef] [PubMed]
  9. S. Okazawa, M. Fujigaki, Y. Morimoto, and T. Matui, “Simultaneous measurement of out-of-plane and in-plane displacements by phase-shifting digital holographic interferometry,” Appl. Mech. Mater. 3–4, 223–228 (2005). [CrossRef]
  10. Y. Morimoto, T. Matui, M. Fujigaki, and A. Matsui, “Three-dimensional displacement analysis by windowed phase-shifting digital holographic interferometry,” Strain 44, 49–56(2008). [CrossRef]
  11. C. A. Sciammarella, “Holographic moiré, an optical tool for the determination of displacements, strains, contours, and slopes of surfaces” Opt. Eng. 21, 447–457 (1982).
  12. C. A. Sciammarella, P. K. Rastogi, P. Jacquot, and R. Narayanan, “Holographic moiré in real time,” Exp. Mech. 22, 52–63 (1982). [CrossRef]
  13. E. S. Simova and K. N. Stoev, “Automated Fourier transform fringe-pattern analysis in holographic moiré,” Opt. Eng. 32, 2286–2294 (1993). [CrossRef]
  14. A. Patil and P. Rastogi, “Phase determination in holographic moiré in presence of nonsinusoidal waveforms and random noise,” Opt. Commun. 257, 120–132 (2006). [CrossRef]
  15. A. Patil, R. Langoju, and P. Rastogi, “Constraints in dual phase shifting interferometry,” Opt. Express 14, 88–102(2006). [CrossRef] [PubMed]
  16. A. Patil, P. Rastogi, and B. Raphael, “A stochastic method for generalized data reduction in holographic moiré,” Opt. Commun. 248, 395–405 (2005). [CrossRef]
  17. A. Patil and P. Rastogi, “Maximum-likelihood estimator for dual phase extraction in holographic moiré,” Opt. Lett. 30, 2227–2229 (2005). [CrossRef] [PubMed]
  18. A. Patil, R. Langoju, and P. Rastogi, “Model-based processing of a holographic moiré,” Opt. Lett. 30, 2870–2872 (2005). [CrossRef] [PubMed]
  19. A. Patil and P. Rastogi, “Estimation of multiple phases in holographic moiré in presence of harmonics and noise using minimum-norm algorithm,” Opt. Express 13, 4070–4084(2005). [CrossRef] [PubMed]
  20. A. Patil and P. Rastogi, “Rotational invariance approach for the evaluation of multiple phases in interferometry in the presence of nonsinusoidal waveforms and noise,” J. Opt. Soc. Am. A 22, 1918–1928 (2005). [CrossRef]
  21. R. Langoju, A. Patil, and P. Rastogi, “Resolution-enhanced Fourier transform method for the estimation of multiple phases in interferometry,” Opt. Lett. 30, 3326–3328 (2005). [CrossRef]
  22. R. Langoju, A. Patil, and P. Rastogi, “Estimation of multiple phases in interferometry in the presence of nonlinear arbitrary phase steps,” Opt. Express 14, 7686–7691 (2006). [CrossRef] [PubMed]
  23. A. Patil, R. Langoju, P. Rastogi, and S. Ramani, “Statistical study and experimental verification of high-resolution methods in phase-shifting interferometry,” J. Opt. Soc. Am. A 24, 794–813 (2007). [CrossRef]
  24. U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002). [CrossRef]
  25. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley, 2005).
  26. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited