OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 21 — Jul. 20, 2011
  • pp: 4207–4220

Phase-shifting technique for improving the imaging capacity of sparse-aperture optical interferometers

François Hénault  »View Author Affiliations

Applied Optics, Vol. 50, Issue 21, pp. 4207-4220 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1065 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe the principle of a multiaperture interferometer that uses a phase-shifting technique and is suitable for quick snapshot imaging of astrophysical objects at extreme angular resolution through Fourier inversion. A few advantages of the proposed design are highlighted, among which are radiometric efficiency, field of view equivalent to those of Fizeau interferometers, and a preliminary calibration procedure allowing characterization of instrumental errors. For large telescope numbers, the proposed design also results in considerable simplification of the optical and mechanical design. Numerical simulations suggest that it should be possible to couple hundreds of telescopes on a single 4 K × 4 K detector array, using only conventional optical components or emerging technologies.

© 2011 Optical Society of America

OCIS Codes
(110.2990) Imaging systems : Image formation theory
(110.5100) Imaging systems : Phased-array imaging systems
(350.1260) Other areas of optics : Astronomical optics

ToC Category:
Imaging Systems

Original Manuscript: January 26, 2011
Revised Manuscript: April 15, 2011
Manuscript Accepted: June 10, 2011
Published: July 19, 2011

François Hénault, "Phase-shifting technique for improving the imaging capacity of sparse-aperture optical interferometers," Appl. Opt. 50, 4207-4220 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. R. Thompson, J. M. Moran, and G. W. Swenson Jr., Interferometry and Synthesis in Radio Astronomy (Wiley-Interscience, 2001). [CrossRef]
  2. S. K. Saha, Aperture Synthesis (Springer, 2010).
  3. J. E. Baldwin, M. G. Beckett, R. C. Boysen, D. Burns, D. F. Buscher, G. C. Cox, C. A. Haniff, C. D. Mackay, N. S. Nightingale, J. Rogers, P. A. G. Scheuer, T. R. Scott, P. G. Tuthill, P. J. Warner, D. M. A. Wilson, and R. W. Wilson, “The first images from an optical aperture synthesis array: Mapping of Capella with COAST at two epochs,” Astron. Astrophys. 306, L13–L16 (1996).
  4. J. D. Monnier, M. Zhao, E. Pedretti, N. Thureau, M. Ireland, P. Muirhead, J.-P. Berger, R. Millan-Gabet, G. Van Belle, T. ten Brummelaar, H. McAlister, S. Ridgway, N. Turner, L. Sturmann, J. Sturmann, and D. Berger, “Imaging the surface of Altair,” Science 317, 342–345 (2007). [CrossRef] [PubMed]
  5. M. Zhao, D. Gies, J. D. Monnier, N. Thureau, E. Pedretti, F. Baron, A. Merand, T. ten Brummelaar, H. McAlister, S. T. Ridgway, N. Turner, J. Sturmann, L. Sturmann, C. Farrington, and P. J. Goldfinger, “First resolved images of the eclipsing and interacting binary β Lyrae,” Astrophys. J. 684, L95–L98 (2008). [CrossRef]
  6. J.-B. Le Bouquin, S. Lacour, S. Renard, E. Thiébaut, A. Merand, and T. Verhoelst, “Pre-maximum spectro-imaging of the Mira star T Leporis with AMBER/VLTI,” Astron. Astrophys. 496, L1–L4 (2009). [CrossRef]
  7. B. Kloppenborg, R. Stencel, J. D. Monnier, G. Schaefer, M. Zhao, F. Baron, H. McAlister, T. ten Brummelaar, X. Che, C. Farrington, E. Pedretti, P. J. Sallave-Goldfinger, J. Sturmann, L. Sturmann, N. Thureau, N. Turner, and S. M. Carroll, “Infrared images of the transiting disk in the e Aurigae system,” Nature 464, 870–872 (2010). [CrossRef] [PubMed]
  8. S. Kraus, K.-H. Hofmann, K. M. Menten, D. Schert, G. Weigelt, F. Wyrowski, A. Meilland, K. Perraut, R. Petrov, S. Robbe-Dubois, P. Schilke, and L. Testi, “A hot compact dust disk around a massive young stellar object,” Nature 466, 339–342(2010). [CrossRef] [PubMed]
  9. D. Mourard, J. M. Clausse, A. Marcotto, K. Perraut, I. Tallon-Bosc, P. Bério, A. Blazit, D. Bonneau, S. Bosio, Y. Bresson, O. Chesneau, O. Delaa, F. Hénault, Y. Hughes, S. Lagarde, G. Merlin, A. Roussel, A. Spang, P. Stee, M. Tallon, P. Antonelli, R. Foy, P. Kervella, R. Petrov, E. Thiebaut, F. Vakili, H. McAlister, T. ten Brummelaar, J. Sturmann, L. Sturmann, N. Turner, C. Farrington, and P. J. Goldfinger, “VEGA: Visible spEctroGraph and polArimeter for the CHARA array: principle and performance,” Astron. Astrophys. 508, 1073–1083 (2009). [CrossRef]
  10. J. D. Monnier, E. Pedretti, N. Thureau, J.-P. Berger, R. Millan-Gabet, T. ten Brummelaar, H. McAlister, J. Sturmann, L. Sturmann, P. Muirhead, A. Tannirkulam, S. Webster, and M. Zhao, “Michigan Infrared Combiner (MIRC): commissioning results at the CHARA array,” Proc. SPIE 6268, 62681P(2006). [CrossRef]
  11. W. A. Traub, “Combining beams from separated telescopes,” Appl. Opt. 25, 528–532 (1986). [CrossRef] [PubMed]
  12. J. M. Beckers, “Field of view considerations for telescope arrays,” Proc. SPIE 628, 255–260 (1986).
  13. J. M. Hill and P. Salinari, “The Large Binocular Telescope Project,” Proc. SPIE 4837, 140–153 (2003). [CrossRef]
  14. A. B. Meinel and M. P. Meinel, “Large sparse aperture space optical systems,” Opt. Eng. 41, 1983–1994 (2002). [CrossRef]
  15. A. Labeyrie, “Resolved imaging of extra-solar planets with future 10–100 km optical interferometric arrays,” Astron. Astrophys. Suppl. Ser. 118, 517–524 (1996). [CrossRef]
  16. E. Pedretti, A. Labeyrie, L. Arnold, N. Thureau, O. Lardiere, A. Boccaletti, and P. Riaud, “First images on the sky from a hyper telescope,” Astron. Astrophys. Suppl. Ser. 147, 285–290(2000). [CrossRef]
  17. F. Vakili, E. Aristidi, L. Abe, and B. Lopez, “Interferometric Remapped Array Nulling,” Astron. Astrophys. 421, 147–156(2004). [CrossRef]
  18. L. Bouyeron, S. Olivier, L. Delage, F. Reynaud, P. Armand, E. Bousquet, and J. Benoist, “First experimental demonstration of temporal hypertelescope operation with a laboratory prototype,” Mon. Not. R. Astron. Soc. 408, 1886–1896, (2010). [CrossRef]
  19. F. Hénault, “Conceptual design of a phase shifting telescope-interferometer,” Opt. Commun. 261, 34–42 (2006). [CrossRef]
  20. F. Hénault, “Multi-spectral piston sensor for co-phasing giant segmented mirrors and multi-aperture interferometric arrays,” J. Opt. A Pure Appl. Opt. 11, 125503 (2009). [CrossRef]
  21. F. Hénault, “Simple Fourier optics formalism for high angular resolution systems and nulling interferometry,” J. Opt. Soc. Am. A 27, 435–449 (2010). [CrossRef]
  22. F. Hénault, “PSF and field of view characteristics of imaging and nulling interferometers,” Proc. SPIE 7734, 773419 (2010). [CrossRef]
  23. M. Born and E. Wolf, Principles of Optics, 6th ed., 508–512 (Pergamon, 1980).
  24. A. Wootten and A. R. Thompson, “The Atacama Large Millimeter/Submillimeter Array,” Proc. IEEE 97, 1463–1471(2009). [CrossRef]
  25. J. Högbom, “Aperture synthesis with non-regular distribution of interferometer baselines,” Astrophys. J. Suppl. Ser. 15, 417–426 (1974).
  26. E. E. Sabatke, J. H. Burge, and P. Hinz, “Optical design of interferometric telescopes with wide fields of view,” Appl. Opt. 45, 8026–8035 (2006). [CrossRef] [PubMed]
  27. J. E. Harvey, A. Kotha, and R. L. Phillips, “Image characteristics in applications utilizing dilute subaperture arrays,” Appl. Opt. 34, 2983–2992 (1995). [CrossRef] [PubMed]
  28. C. Aime, “Fourier optics: imaging with dilute apertures,” in Astronomy with High Contrast Imaging III: Instrumental Techniques, Modeling and Data Processing, M.Carbillet, A.Ferrari, and C.Aime eds., EAS Publications Series Vol.  22, pp. 351–366 (2006).
  29. M. J. E. Golay, “Point arrays having compact, nonredundant autocorrelations,” J. Opt. Soc. Am. 61, 272–273 (1971). [CrossRef]
  30. J. F. Walkup and J. W. Goodman, “Limitations of fringe-parameter estimation at low light levels,” J. Opt. Soc. Am. 63, 399–407 (1973). [CrossRef]
  31. W. J. Tango and R. Q. Twiss, “Michelson stellar interferometry,” Prog. Opt. 17, 239–277 (1980). [CrossRef]
  32. F. Roddier, “Redundant versus non-redundant beam recombination in aperture synthesis with coherent optical arrays,” J. Opt. Soc. Am. A 4, 1396–1401 (1987). [CrossRef]
  33. C. Buisset, X. Rejeaunier, Y. Rabbia, and M. Barillot, “Stable deep nulling in polychromatic unpolarized light with multiaxial beam combination,” Appl. Opt. 46, 7817–7822 (2007). [CrossRef] [PubMed]
  34. F. Laurent, F. Hénault, P. Ferruit, E. Prieto, D. Robert, E. Renault, J. P. Dubois, and R. Bacon, “CRAL activities on advanced image slicers: optical design, manufacturing, assembly, integration and testing,” New Astron. Rev. 50, 346–350(2006). [CrossRef]
  35. F. Laurent, F. Hénault, E. Renault, R. Bacon, and J. P. Dubois, “Design of an integral field unit for MUSE, and results from prototyping,” Publ. Astron. Soc. Pac. 118 , 1564–1573 (2006). [CrossRef]
  36. T. Kotani, S. Lacour, G. Perrin, G. Robertson, and P. Tuthill, “Pupil remapping for high contrast astronomy: results from an optical testbed,” Opt. Express 17, 1925–1934 (2009). [CrossRef] [PubMed]
  37. P. Tuthill, N. Jovanovic, S. Lacour, A. Lehmann, M. Ams, G. Marshall, J. Lawrence, M. Withford, G. Robertson, M. Ireland, B. Pope, and P. Stewart, “Photonic technologies for a pupil remapping interferometer,” Proc. SPIE 7734, 77341P(2010). [CrossRef]
  38. R. C. Jennison, “A phase sensitive interferometer technique for the measurement of the Fourier transforms of spatial brightness distribution of small angular extend,” Mon. Not. R. Astron. Soc. 118, 276–284 (1958).
  39. D. H. Rogstad, “A technique for measuring visibility phase with an optical interferometer in the presence of atmospheric seeing,” Appl. Opt. 7, 585–588 (1968). [CrossRef] [PubMed]
  40. W. T. Rhodes and J. W. Goodman, “Interferometric technique for recording and restoring images degraded by unknown aberrations,” J. Opt. Soc. Am. 63, 647–657 (1973). [CrossRef]
  41. P. Cruzalèbes, G. Schumacher, and J.-L. Starck, “Model-independent mapping by optical aperture synthesis: basic principles and computer simulation,” J. Opt. Soc. Am. A 9, 708–724 (1992). [CrossRef]
  42. J. C. Marron, P. P. Sanchez, and R. C. Sullivan, “Unwrapping algorithm for least-squares phase recovery from the modulo 2π bispectrum phase,” J. Opt. Soc. Am. A 7, 14–20 (1990). [CrossRef]
  43. C. A. Haniff, “Least-squares Fourier phase estimation from the modulo 2π bispectrum phase,” J. Opt. Soc. Am. A 8, 134–140 (1991). [CrossRef]
  44. A. H. Greenaway, “Terrestrial optical aperture synthesis technique (TOAST),” Opt. Commun. 58, 149–154 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited