OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 21 — Jul. 20, 2011
  • pp: 4226–4231

Characteristics of plasma scalds in multilayer dielectric films

Xiaofeng Liu, Yuan’an Zhao, Dawei Li, Guohang Hu, Yanqi Gao, Zhengxiu Fan, and Jianda Shao  »View Author Affiliations


Applied Optics, Vol. 50, Issue 21, pp. 4226-4231 (2011)
http://dx.doi.org/10.1364/AO.50.004226


View Full Text Article

Enhanced HTML    Acrobat PDF (916 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Plasma scalding is one of the most typical laser damage morphologies induced by a nanosecond laser with a wavelength of 1053 nm in HfO 2 / SiO 2 multilayer films. In this paper, the characteristics of plasma scalds are systematically investigated with multiple methods. The scalding behaves as surface discoloration under a microscope. The shape is nearly circular when the laser incidence angle is close to normal incidence and is elliptical at oblique incidence. The nodular-ejection pit is in the center of the scalding region when the laser irradiates at the incidence angle close to normal incidence and in the right of the scalding region when the laser irradiates from left to right at oblique incidence. The maximum damage size of the scalding increases with laser energy. The edge of the scalding is high compared with the unirradiated film surface, and the region tending to the center is concave. Plasma scald is proved to be surface damage. The maximum depth of a scald increases with its size. Tiny pits of nanometer scale can be seen in the scalding film under a scanning electronic microscope at a higher magnification. The absorptions of the surface plasma scalds tend to be approximately the same as the lower absorptions of test sites without laser irradiation. Scalds do not grow during further illumination pulses until 65 J / cm 2 . The formation of surface plasma scalding may be related to the occurrence of the laser-supported detonation wave.

© 2011 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(240.0310) Optics at surfaces : Thin films
(310.1620) Thin films : Interference coatings

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 22, 2011
Manuscript Accepted: May 20, 2011
Published: July 19, 2011

Citation
Xiaofeng Liu, Yuan’an Zhao, Dawei Li, Guohang Hu, Yanqi Gao, Zhengxiu Fan, and Jianda Shao, "Characteristics of plasma scalds in multilayer dielectric films," Appl. Opt. 50, 4226-4231 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-21-4226

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited