OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 22 — Aug. 1, 2011
  • pp: 4262–4267

Estimation of emission properties for silica particles using thermal radiation spectroscopy

Jeonghoon Lee  »View Author Affiliations

Applied Optics, Vol. 50, Issue 22, pp. 4262-4267 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (421 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper shows that spectrally resolved thermal radiation from silica aggregate particles can be used to extract an emissivity and a temperature in the visible regime. Emissivity of silica aggregate particles at temperatures above 2000 K is measured by the analysis of emission radiation spectra from the particles. Temperature is estimated from the relation between the emission intensity and the wavenumber. Relative emissivities at temperatures from 2150 to 2919 K are presented. Proper knowledge of optical properties for silica aggregate particles will help further the understanding of thermophysics at high temperature.

© 2011 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.2140) Spectroscopy : Emission
(290.6815) Scattering : Thermal emission

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: April 13, 2011
Revised Manuscript: May 30, 2011
Manuscript Accepted: June 13, 2011
Published: July 21, 2011

Jeonghoon Lee, "Estimation of emission properties for silica particles using thermal radiation spectroscopy," Appl. Opt. 50, 4262-4267 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Y. Yin and L. H. Liu, “Influence of complex component and particle polydispersity on radiative properties of soot aggregate in atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 111, 2115–2126 (2010). [CrossRef]
  2. M. Ojanen, P. Kärhä, and E. Ikonen, “Spectral irradiance model for tungsten halogen lamps in 340–850 nm wavelength range,” Appl. Opt. 49, 880–886 (2010). [CrossRef] [PubMed]
  3. M. Freitag, H.-Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, “Thermal infrared emission from biased graphene,” Nat. Nanotechnol. 5, 497–501 (2010). [CrossRef] [PubMed]
  4. N. M. Ravindra, B. Sopori, O. H. Gokce, S. X. Cheng, A. Shenoy, L. Jin, S. Abedrabbo, W. Chen, and Y. Zhang, “Emissivity measurements and modeling of silicon-related materials: an overview,” Int. J. Thermophys. 22, 1593–1611(2001). [CrossRef]
  5. B. Rousseau, M. D. Michiel, A. Canizares, D. D. S. Meneses, P. Echegut, and J. F. Thovert, “Temperature effect (300–1500 K) on the infrared photon transport inside an x-ray microtomographic reconstructed porous silica glass,” J. Quant. Spectrosc. Radiat. Transfer 104, 257–265 (2007). [CrossRef]
  6. E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photonics 3, 514–517 (2009). [CrossRef]
  7. E. Takasuka, E. Tokizaki, K. Terashima, and S. Kimura, “Emissivity of liquid silicon in visible and infrared regions,” J. Appl. Phys. 81, 6384–6389 (1997). [CrossRef]
  8. P. V. Pikhitsa and I. S. Altman, “Anomalies in light absorption coefficient of silica nanoparticles generated within flame,” J. Nanopart. Res. 3, 303–308 (2001). [CrossRef]
  9. I. S. Altman, D. Lee, J. D. Chung, J. Song, and M. Choi, “Light absorption of silica nanoparticles,” Phys. Rev. B 63, 161402(2001). [CrossRef]
  10. M. R. Zachariah, D. Chin, H. G. Semerjian, and J. L. Katz, “Dynamic light scattering and angular dissymmetry for the in situ measurement of silicon dioxide particle synthesis in flames,” Appl. Opt. 28, 530–536 (1989). [CrossRef] [PubMed]
  11. R. Mueller, H. K. Kammler, S. E. Pratsinis, A. Vital, G. Beaucage, and P. Burtscher, “Non-agglomerated dry silica nanoparticles,” Powder Technol. 140, 40–48 (2004). [CrossRef]
  12. H. D. Jang, “Generation of silica nanoparticles from tetraethylorthodilicate (TEOS) vapor in a diffusion flame,” Aerosol Sci. Technol. 30, 477–488 (1999). [CrossRef]
  13. H. W. Coleman and W. G. Steele Jr., Experimentation and Uncertainty Analysis for Engineers (Wiley, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited