OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 22 — Aug. 1, 2011
  • pp: 4320–4327

Mechanically tunable optical filters with a microring resonator

Dooyoung Hah, John Bordelon, and Dan Zhang  »View Author Affiliations


Applied Optics, Vol. 50, Issue 22, pp. 4320-4327 (2011)
http://dx.doi.org/10.1364/AO.50.004320


View Full Text Article

Enhanced HTML    Acrobat PDF (969 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new type of optical filter based on mechanical tuning and a microring resonator is proposed. The proposed filter is expected to consume much less standing power compared to the conventional thermo-optic and carrier-injection tunable filters. In this work, two methods are used to prove the concept of the proposed device: (1) the analytical method and (2) the finite-difference time-domain method. The dependence of the filter characteristics on some of the device parameters is studied as well.

© 2011 Optical Society of America

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides
(230.4685) Optical devices : Optical microelectromechanical devices
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Optical Devices

History
Original Manuscript: May 10, 2011
Manuscript Accepted: June 17, 2011
Published: July 22, 2011

Citation
Dooyoung Hah, John Bordelon, and Dan Zhang, "Mechanically tunable optical filters with a microring resonator," Appl. Opt. 50, 4320-4327 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-22-4320


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. S. Borella, J. P. Jue, D. Banerjee, B. Ramamurthy, and B. Mukherjee, “Optical components for WDM lightwave networks,” Proc. IEEE 85, 1274–1307 (1997). [CrossRef]
  2. G. E. Keiser, “A review of WDM technology and applications,” Opt. Fiber. Technol. 5, 3–39 (1999). [CrossRef]
  3. M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110 (2006). [CrossRef]
  4. F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of Photonics in Switching (IEEE, 2007), pp 67–68. [CrossRef]
  5. R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring filters,” IEEE Photon. Technol. Lett. 20, 1739–1741 (2008). [CrossRef]
  6. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photon. 1, 407–410 (2007). [CrossRef]
  7. K. Djordjev, S. J. Choi, S. J. Choi, and P. D. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photon. Technol. Lett. 14, 828–830 (2002). [CrossRef]
  8. M. C. M. Lee and M. C. Wu, “MEMS-actuated microdisk resonators with variable power coupling ratios,” IEEE Photon. Technol. Lett. 17, 1034–1036 (2005). [CrossRef]
  9. M. C. M. Lee and M. C. Wu, “Tunable coupling regimes of silicon microdisk resonators using MEMS actuators,” Opt. Express 14, 4703–4712 (2006). [CrossRef] [PubMed]
  10. G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005). [CrossRef]
  11. R. Chatterjee and C. W. Wong, “Nanomechanical proximity perturbation for switching in silicon-based directional couplers for high-density photonic integrated circuits,” J. Microelectromech. Syst. 19, 657–662 (2010). [CrossRef]
  12. F. Chollet, M. de Labachelerie, and H. Fujita, “Compact evanescent optical switch and attenuator with electromechanical actuation,” IEEE J. Sel. Top. Quantum Electron. 5, 52–59(1999). [CrossRef]
  13. M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P. T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14, 1070–1081 (2005). [CrossRef]
  14. E. Marom, O. G. Ramer, and S. Ruschin, “Relation between normal-mode and coupled-mode analyses of parallel waveguides,” IEEE J. Quantum Electron. 20, 1311–1319(1984). [CrossRef]
  15. H. Ribot, P. Sansonetti, and A. Carenco, “Improved design for the monolithic integration of a laser and an optical waveguide coupled by an evanescent field,” IEEE J. Quantum Electron. 26, 1930–1941 (1990). [CrossRef]
  16. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000). [CrossRef]
  17. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method(Artech, 2000).
  18. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited