OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 22 — Aug. 1, 2011
  • pp: 4328–4332

Miniature tapered photonic crystal fiber interferometer with enhanced sensitivity by acid microdroplets etching

Sun-jie Qiu, Ye Chen, Jun-long Kou, Fei Xu, and Yan-qing Lu  »View Author Affiliations


Applied Optics, Vol. 50, Issue 22, pp. 4328-4332 (2011)
http://dx.doi.org/10.1364/AO.50.004328


View Full Text Article

Enhanced HTML    Acrobat PDF (326 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We fabricate a miniature tapered photonic crystal fiber (PCF) interferometer with enhanced sensitivity by acid microdroplets etching. This method is very simple and cost effective, avoiding elongating the PCF, moving and refixing the device during etching, and measuring. The refractive index sensing properties with different PCF diameters are investigated both theoretically and experimentally. The tapering velocity can be controlled by the microdroplet size and position. The sensitivity greatly increases (five times, 750 nm / RIU ) and the size decreases after slightly tapering the PCF. The device keeps low temperature dependence before and after tapering. More uniformly and thinly tapered PCFs can be realized with higher sensitivity ( 100 times) by optimizing the etching process.

© 2011 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 29, 2011
Manuscript Accepted: June 12, 2011
Published: July 22, 2011

Citation
Sun-jie Qiu, Ye Chen, Jun-long Kou, Fei Xu, and Yan-qing Lu, "Miniature tapered photonic crystal fiber interferometer with enhanced sensitivity by acid microdroplets etching," Appl. Opt. 50, 4328-4332 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-22-4328


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Ju, Z. Wang, W. Jin, and M. S. Demokan, “Temperature sensitivity of a two-mode photonic crystal fiber interferometric sensor,” IEEE Photon. Technol. Lett. 18, 2168–2170 (2006). [CrossRef]
  2. O. Frazao, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2, 449–459 (2008). [CrossRef]
  3. X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007). [CrossRef]
  4. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007). [CrossRef]
  5. J. Villatoro, M. P. Kreuzer, R. Jha, V. P. Minkovich, V. Finazzi, G. Badenes, and V. Pruneri, “Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity,” Opt. Express 17, 1447–1453 (2009). [CrossRef] [PubMed]
  6. S. Y. Zhang, Q. Zhong, X. S. Qian, X. W. Lin, F. Xu, W. Hu, and Y. Q. Lu, “A three-beam path photonic crystal fiber modal interferometer and its sensing applications,” J. Appl. Phys. 108, 023107 (2010). [CrossRef]
  7. S. S. Li, Z. D. Huang, X. S. Song, S. Y. Zhang, Q. Zhong, F. Xu, and Y. Q. Lu, “Photonic crystal fibre based high temperature sensor with three-beam path interference,” Electron. Lett. 46, 1394–1396 (2010). [CrossRef]
  8. R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34, 617–619 (2009). [CrossRef] [PubMed]
  9. J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, “Simple all-microstructured-optical-fiber interferometer built via fusion splicing,” Opt. Express 15, 1491–1496 (2007). [CrossRef] [PubMed]
  10. V. P. Minkovich, J. Villatoro, D. Monzon-Hernandez, S. Calixto, A. B. Sotsky, and L. I. Sotskaya, “Holey fiber tapers with resonance transmission for high-resolution refractive index sensing,” Opt. Express 13, 7609–7614 (2005). [CrossRef] [PubMed]
  11. E. J. Zhang, W. D. Sacher, and J. K. S. Poon, “Hydrofluoric acid flow etching of low-loss subwavelength-diameter biconical fiber tapers,” Opt. Express 18, 22593–22598(2010). [CrossRef] [PubMed]
  12. G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12, 043001 (2010). [CrossRef]
  13. G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett. 42, 517–519 (2006). [CrossRef]
  14. G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1, 107–161 (2009). [CrossRef]
  15. T. Wei, Y. K. Han, Y. J. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16, 5764–5769 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited