OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 22 — Aug. 1, 2011
  • pp: 4353–4364

Evaluation of the aerosol models for SeaWiFS and MODIS by AERONET data over open oceans

Xianqiang He, Delu Pan, Yan Bai, Qiankun Zhu, and Fang Gong  »View Author Affiliations

Applied Optics, Vol. 50, Issue 22, pp. 4353-4364 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1457 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The operational atmospheric correction algorithm for Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS) uses the predefined aerosol models to retrieve aerosol optical properties, and their accuracy depends on how well the aerosol models can represent the real aerosol optical properties. In this paper, we developed a method to evaluate the aerosol models (combined with the model selection methodology) by simulating the aerosol retrieval using the Aerosol Robotic Network (AERONET) data. Our method can evaluate the ability of aerosol models themselves, independent of the sensor performance. Two types of aerosol models for SeaWiFS and MODIS operational atmospheric correction algorithms are evaluated over global open oceans, namely the GW1994 models and Ahmad2010 models. The results show that GW1994 models significantly overestimate the aerosol optical thicknesses and underestimate the Ångström exponent, which is caused by the underestimation of the scattering phase function. However, Ahmad2010 models can significantly reduce the overestimation of the aerosol optical thickness and the underestimation of the Ångström exponent as a whole, but this improvement depends on the backscattering angle. Ahmad2010 models have a significant improvement in the retrieval of the aerosol optical thickness at a backscattering angle less than 140 ° . For a backscattering angle larger than 140 ° , GW1994 models are better at retrieving the aerosol optical thickness than the Ahmad2010 models.

© 2011 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1285) Atmospheric and oceanic optics : Atmospheric correction
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: March 14, 2011
Manuscript Accepted: May 22, 2011
Published: July 22, 2011

Xianqiang He, Delu Pan, Yan Bai, Qiankun Zhu, and Fang Gong, "Evaluation of the aerosol models for SeaWiFS and MODIS by AERONET data over open oceans," Appl. Opt. 50, 4353-4364 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, and W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36(1983). [CrossRef] [PubMed]
  2. W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, and C. S. Yentsch, “NIMBUS-7 coastal zone color scanner: system description and initial imagery,” Science 210, 60–63 (1980). [CrossRef] [PubMed]
  3. S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, “An overview of SeaWiFS and ocean color,” Tech. Memo 104566 (NASA, 1992).
  4. V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 145–152 (1989). [CrossRef]
  5. C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, and N. Kuring, “Science quality SeaWiFS data for global biosphere research,” Sea Technol. 39, 10–16 (1998).
  6. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102, 17081–17106 (1997). [CrossRef]
  7. B. A. Franz, S. B. Bailey, P. J. Werdell, and C. R. McClain, “Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry,” Appl. Opt. 46, 5068–5082(2007). [CrossRef] [PubMed]
  8. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452(1994). [CrossRef] [PubMed]
  9. M.Wang, ed., “Atmospheric correction for remotely-sensed ocean-colour products,” Rep. 10 (International Ocean-Colour Coordinating Group, 2010), p. 78.
  10. E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Report No. AFGL-TR-79-0214(United States Air Force Geophysics Laboratory, Hanscom Air Force Base, 1979).
  11. M. Wang and H. R. Gordon, “Estimating aerosol optical properties over the oceans with the multiangle imaging spectroadiometer: some preliminary studies,” Appl. Opt. 33, 4042–4057 (1994). [CrossRef] [PubMed]
  12. M. Schwindling, P. Y. Deschamps, and R. Frouin, “Verification of aerosol models for satellite ocean color remote sensing,” J. Geophys. Res. 103, 24919–24935 (1998). [CrossRef]
  13. A. Smirnov, B. N. Holben, Y. J. Kaufman, O. Dubovik, T. F. Eck, I. Slutsker, C. Pietras, and R. N. Halthore, “Optical properties of atmospheric aerosol in marine environments,” J. Atmos. Sci. 59, 501–523 (2002). [CrossRef]
  14. M. Wang, K. D. Knobelspiesse, and C. R. McClain, “Study of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products,” J. Geophys. Res. 110, D10S06 (2005). [CrossRef]
  15. F. Mélin, M. Clerici, G. Zibordi, B. N. Holben, and A. Smirnov, “Validation of SeaWiFS and MODIS aerosol products with globally distributed AERONET data,” Remote Sens. Environ. 114, 230–250 (2010). [CrossRef]
  16. Z. Ahmad, B. A. Franz, C. R. McClain, E. J. Kwiatkowska, J. Werdell, E. P. Shettle, and B. N. Holben, “New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans,” Appl. Opt. 49, 5545–5560 (2010). [CrossRef] [PubMed]
  17. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagon, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET: a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998). [CrossRef]
  18. T. F. Eck, B. N. Holben, J. Reid, O. Dubovik, A. Smirnov, N. T. O’Neill, I. Slutsker, and S. Kinne, “Wavelength dependence of the optical depth of biomass burning, urban, and desert aerosols,” J. Geophys. Res. 104, 31333–31349 (1999). [CrossRef]
  19. A. Smirnov, “Cloud-screening and quality control algorithms for the AERONET database,” Remote Sens. Environ. 73, 337–349 (2000). [CrossRef]
  20. A. Chu, Y. J. Kaufman, C. Ichoku, L. A. Remer, D. Tanre, and B. N. Holben, “Validation of MODIS aerosol optical depth retrieval over land,” Geophys. Res. Lett. 29, 8007 (2002). [CrossRef]
  21. O. Torres, J. R. Herman, P. K. Bhartia, and A. Sinyuk, “Aerosol properties from EP-TOMS near UV observations,” Adv. Space Res. 29, 1771–1780 (2002). [CrossRef]
  22. O. Torres, P. K. Bhartia, J. R. Herman, A. Sinyuk, P. Ginoux, and B. N. Holben, “A long-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurement,” J. Atmos. Sci. 59, 398–413 (2002). [CrossRef]
  23. T. X. Zhao, L. Stowe, A. Smirnov, D. Crosby, J. Sapper, and C. McClain, “Development of a global validation package for satellite oceanic aerosol optical thickness retrieval based on AERONET observations and its application to NOAA/NESDIS operational aerosol retrievals,” J. Atmos. Sci. 59, 294–312 (2002). [CrossRef]
  24. M. Wang and H. R. Gordon, “Radiance reflected from the ocean-atmosphere system: synthesis from individual components of the aerosol size distribution,” Appl. Opt. 33, 7088–7095 (1994). [CrossRef] [PubMed]
  25. P. Y. Deschamps, M. Herman, and D. Tanre, “Modeling of the atmospheric effects and its application to the remote sensing of ocean color,” Appl. Opt. 22, 3751–3758 (1983). [CrossRef] [PubMed]
  26. H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 coastal zone color scanner,” Appl. Opt. 27, 862–871 (1988). [CrossRef] [PubMed]
  27. H. R. Gordon and M. Wang, “Surface roughness considerations for atmospheric correction of ocean color sensors. I: the Rayleigh scattering component,” Appl. Opt. 31, 4247–4260(1992). [CrossRef] [PubMed]
  28. P. J. Werdell, S. Bailey, G. Fargion, C. Pietras, K. Knobelspiesse, G. Feldman, and C. R. McClain, “Unique data repository facilitates ocean color satellite validation,” Eos Trans. AGU 84(38), 377 (2003). [CrossRef]
  29. A. Smirnov, B. N. Holben, I. Slutsker, D. M. Giles, C. R. McClain, T. F. Eck, S. M. Sakerin, A. Macke, P. Croot, G. Zibordi, P. K. Quinn, J. Sciare, S. Kinne, M. Harvey, T. J. Smyth, S. Piketh, T. Zielinski, A. Proshutinsky, J. I. Goes, N. B. Nelson, P. Larouche, V. F. Radionov, P. Goloub, K. K. Moorthy, R. Matarrese, E. J. Robertson, and F. Jourdin, “Maritime Aerosol Network as a component of Aerosol Robotic Network,” J. Geophys. Res. 114, D06204 (2009). [CrossRef]
  30. D. Antoine and A. Morel, “A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones,” Int. J. Remote Sens. 20, 1875–1916 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited