OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 22 — Aug. 1, 2011
  • pp: 4389–4392

Adaptive conversion of a high-order mode beam into a near-diffraction-limited beam

Haichuan Zhao, Xiaolin Wang, Haotong Ma, Pu Zhou, Yanxing Ma, Xiaojun Xu, and Yijun Zhao  »View Author Affiliations


Applied Optics, Vol. 50, Issue 22, pp. 4389-4392 (2011)
http://dx.doi.org/10.1364/AO.50.004389


View Full Text Article

Enhanced HTML    Acrobat PDF (257 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a new method for efficiently transforming a high-order mode beam into a nearly Gaussian beam with much higher beam quality. The method is based on modulation of phases of different lobes by stochastic parallel gradient descent algorithm and coherent addition after phase flattening. We demonstrate the method by transforming an LP 11 mode into a nearly Gaussian beam. The experimental results reveal that the power in the diffraction-limited bucket in the far field is increased by more than a factor of 1.5.

© 2011 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(140.3300) Lasers and laser optics : Laser beam shaping
(140.3510) Lasers and laser optics : Lasers, fiber

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 10, 2011
Revised Manuscript: May 30, 2011
Manuscript Accepted: May 30, 2011
Published: July 27, 2011

Citation
Haichuan Zhao, Xiaolin Wang, Haotong Ma, Pu Zhou, Yanxing Ma, Xiaojun Xu, and Yijun Zhao, "Adaptive conversion of a high-order mode beam into a near-diffraction-limited beam," Appl. Opt. 50, 4389-4392 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-22-4389


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Li, X. Chen, A. Liu, S. Gray, J. Wang, D. T. Walton, and L. A. Zenteno, “Limit of effective area for single-mode operation in step-index large mode area laser fibers,” J. Lightwave Technol. 27, 3010–3016 (2009). [CrossRef]
  2. R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, “Discontinuous phase elements for transverse mode selection in laser resonators,” Appl. Phys. Lett. 74, 1373–1375 (1999). [CrossRef]
  3. T. Graf and J. E. Balmer, “Laser beam quality, entropy and the limits of beam shaping,” Opt. Commun. 131, 77–83 (1996). [CrossRef]
  4. M. T. Eismann, A. M. Tai, and J. N. Cederquist, “Iterative design of a holographic beamformer,” Appl. Opt. 28, 2641–2650 (1989). [CrossRef] [PubMed]
  5. N. Davidson, A. A. Friesem, and E. Hasman, “Diffractive elements for annular laser beam transformation,” Appl. Phys. Lett. 61, 381–383 (1992). [CrossRef]
  6. R. Oron, N. Davidson, and A. A. Friesem, “Continuous-phase elements can improve laser beam quality,” Opt. Lett. 25, 939–941 (2000). [CrossRef]
  7. R. Oron, N. Davidson, A. A. Friesem, and E. Hasman, “Efficient formation of pure helical laser beams,” Opt. Commun. 182, 205–208 (2000). [CrossRef]
  8. G. Machavariani, N. Davidson, A. A. Ishaaya, A. A. Friesem, and E. Hasman, “Efficient formation of a high-quality beam from a pure high-order Hermite-Gaussian mode,” Opt. Lett. 27, 1501–1503 (2002). [CrossRef]
  9. R. Oron, L. Shimshi, S. Blit, N. Davidson, A. A. Friesem, and E. Hasman, “Laser operation with orthogonally polarized transverse modes,” Appl. Opt. 41, 3634–3637(2002). [CrossRef] [PubMed]
  10. A. A. Ishaaya, G. Machavariani, N. Davidson, and A. A. Friesem, “Conversion of a high-order mode beam into a nearly Gaussian beam by use of a single interferometric element,” Opt. Lett. 28, 504–506 (2003). [CrossRef] [PubMed]
  11. G. Machavariani, A. A. Ishaaya, L. Shimshi, N. Davidson, and A. A. Friesem, “Efficient mode transformations of degenerate Laguerre-Gaussian beams,” Appl. Opt. 43, 2561–2567 (2004). [CrossRef] [PubMed]
  12. G. Machavariani, “Effect of phase imperfections on high-order mode selection with intracavity phase elements,” Appl. Opt. 43, 6328–6333 (2004). [CrossRef] [PubMed]
  13. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32, 1468–1470 (2007). [CrossRef] [PubMed]
  14. G. Machavariani, S. Jackel, Y. Lumer, I. Moshe, and A. Meir, “Spatially variable retardation plate for beam brightness enhancement in a high-power laser,” Opt. Lett. 32, 2626–2628 (2007). [CrossRef] [PubMed]
  15. E. Daly, C. Dainty, G. O’Connor, and T. Glynn, “Wave-front correction of a femtosecond laser using a deformable mirror,” Proc. SPIE 5708, 71–82 (2005). [CrossRef]
  16. S. W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou, and V. Yanovsky, “Generation and characterization of the highest laser intensities (1022 W/cm2),” Opt. Lett. 29, 2837–2839(2004). [CrossRef]
  17. M. A. Vorontsov and V. P. Sivokon, “Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction,” J. Opt. Soc. Am. A 15, 2745–2758(1998). [CrossRef]
  18. G. W. Carhart, J. C. Ricklin, V. P. Sivokon, and M. A. Vorontsov, “Parallel perturbation gradient descent algorithm for adaptive wavefront correction,” Proc. SPIE 3126, 221–227(1997). [CrossRef]
  19. G. Cauwenberghs, “A fast stochastic error-descent algorithm for supervised learning and optimization,” in Advances in Neural Information Processing Systems 5 (Morgan Kaufmann, 1993), pp. 244–251.
  20. P. Zhou, Y. Ma, X. Wang, H. Ma, X. Xu, and Z. Liu, “Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Lett. 34, 2939–2941 (2009). [CrossRef] [PubMed]
  21. W. P. Grice and R. S. Bennink, “Spatial entanglement and optimal single-mode coupling,” Phys. Rev. A 83, 023810(2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited