OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 22 — Aug. 1, 2011
  • pp: 4393–4402

Simultaneous retrieval of the complex refractive indices of the core and shell of coated aerosol particles from extinction measurements using simulated annealing

Carynelisa Erlick, Mitch Haspel, and Yinon Rudich  »View Author Affiliations

Applied Optics, Vol. 50, Issue 22, pp. 4393-4402 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (286 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Simultaneously retrieving the complex refractive indices of the core and shell of coated aerosol particles given the measured extinction efficiency as a function of particle dimensions (core diameter and coated diameter) is much more difficult than retrieving the complex refractive index of homogeneous aerosol particles. Not only must the minimization be performed over a four-parameter space, making it less efficient, but in addition the absolute value of the difference between the measured extinction and the calculated extinction does not have an easily distinguished global minimum. Rather, there are a number of local minima to which almost all conventional retrieval algorithms converge. In this work, we develop a new (to our knowledge) retrieval algorithm that employs the numerical method known as simulated annealing with an innovative “temperature” schedule. This study is limited only to spherical particles with a concentric shell and to cases in which the diameter of both the core and the coated particle are known. We find that when the top ranking particle sizes according to their information content are combined from separate experiments to make up the particle size distribution, the simulated annealing retrieval algorithm is quite robust and by far superior to a greedy random perturbation approach often used.

© 2011 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(010.1110) Atmospheric and oceanic optics : Aerosols

ToC Category:
Atmospheric and Oceanic Optics: Wave-front Sensing

Original Manuscript: February 17, 2011
Revised Manuscript: June 10, 2011
Manuscript Accepted: June 14, 2011
Published: July 27, 2011

Carynelisa Erlick, Mitch Haspel, and Yinon Rudich, "Simultaneous retrieval of the complex refractive indices of the core and shell of coated aerosol particles from extinction measurements using simulated annealing," Appl. Opt. 50, 4393-4402 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Chýlek, G. B. Lesins, G. Videen, J. G. D. Wong, R. G. Pinnick, D. Ngo, and J. D. Klett, “Black carbon and absorption of solar radiation by clouds,” J. Geophys. Res. 101, 23365–23371(1996). [CrossRef]
  2. S. A. Guazzotti, J. R. Whiteaker, D. Suess, K. R. Coffee, and K. A. Prather, “Real-time measurements of the chemical composition of size-resolved particles during a Santa Ana wind episode, California USA,” Atmos. Environ. 35, 3229–3240(2001). [CrossRef]
  3. G. Lesins, P. Chýlek, and U. Lohmann, “A study of internal and external mixing scenarios and its effect on aerosol optical properties and direct radiative forcing,” J. Geophys. Res. 107, 4094–4105 (2002). [CrossRef]
  4. L. M. Russell, S. F. Maria, and S. C. B. Myneni, “Mapping organic coatings on atmospheric particles,” Geophys. Res. Lett. 29, 1779–1782 (2002). [CrossRef]
  5. A. H. Falkovich, G. Schkolnik, E. Ganor, and Y. Rudich, “Adsorption of organic compounds pertinent to urban environments onto mineral dust particles,” J. Geophys. Res. 109, D01201 (2004). [CrossRef]
  6. A. Gelencser, Carbonaceous Aerosol (Springer, 2004).
  7. S. F. Maria, L. M. Russell, M. K. Gilles, and S. C. B. Myneni, “Organic aerosol growth mechanisms and their climate-forcing implications,” Science 306, 1921–1924 (2004). [CrossRef] [PubMed]
  8. Q. Zhang, M. R. Canagaratna, J. T. Jayne, D. R. Worsnop, and J. L. Jimenez, “Time- and size-resolved chemical composition of submicron particles in Pittsburgh: implications for aerosol sources and processes,” J. Geophys. Res. 110, D07S09 (2005). [CrossRef]
  9. J. P. Schwarz, R. S. Gao, D. W. Fahey, D. S. Thomson, L. A. Watts, J. C. Wilson, J. M. Reeves, M. Darbeheshti, D. G. Baumgardner, G. L. Kok, S. H. Chung, M. Schulz, J. Hendricks, A. Lauer, B. Karcher, J. G. Slowik, K. H. Rosenlof, T. L. Thompson, A. O. Langford, M. Loewenstein, and K. C. Aikin, “Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere,” J. Geophys. Res. 111, D16207 (2006). [CrossRef]
  10. P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S.Solomon, D.Qin, M.Manning, Z.Chen, M.Marquis, K.B.Averyt, M.Tignor, and H.L.Miller, eds. (Cambridge University, 2007), pp. 129–234.
  11. A. Abo Riziq, C. Erlick, E. Dinar, and Y. Rudich, “Optical properties of absorbing and nonabsorbing aerosols retrieved by cavity ring down (CRD) spectroscopy,” Atmos. Chem. Phys. 7, 1523–1536 (2007). [CrossRef]
  12. N. Lang-Yona, A. Abo Riziq, C. Erlick, E. Segre, M. Trainic, and Y. Rudich, “Interaction of internally mixed aerosols with light,” Phys. Chem. Chem. Phys. 12, 21–31 (2010). [CrossRef]
  13. A. L. Robinson, N. M. Donahue, M. K. Shrivastava, E. A. Weitkamp, A. M. Sage, A. P. Grieshop, T. E. Lane, J. R. Pierce, and S. N. Pandis, “Rethinking organic aerosols: semivolatile emissions and photochemical aging,” Science 315, 1259–1262(2007). [CrossRef] [PubMed]
  14. G. Adler, A. Abo Riziq, C. Erlick, and Y. Rudich, “Effect of intrinsic organic carbon on the optical properties of fresh diesel soot,” Proc. Natl. Acad. Sci. USA 107, 6699–6704 (2010). [CrossRef]
  15. V. Bulatov, M. Fisher, and I. Schechter, “Aerosol analysis by cavity-ring-down laser spectroscopy,” Anal. Chim. Acta 466, 1–9 (2002). [CrossRef]
  16. A. Pettersson, E. R. Lovejoy, C. A. Brock, S. S. Brown, and A. R. Ravishankara, “Measurement of aerosol optical extinction at 532 nm with pulsed cavity ring down spectroscopy,” J. Aerosol Sci. 35, 995–1011 (2004). [CrossRef]
  17. D. A. Lack, E. R. Lovejoy, T. Baynard, A. Pettersson, and A. R. Ravishankara, “Aerosol absorption measurement using photoacoustic spectroscopy: Sensitivity, calibration, and uncertainty developments,” Aerosol Sci. Technol. 40, 697–708 (2006). [CrossRef]
  18. V. Bulatov, Y. H. Chen, A. Khalmanov, and I. Schechter, “Absorption and scattering characterization of airborne microparticulates by a cavity ring down technique,” Anal. Bioanal. Chem. 384, 155–160 (2006). [CrossRef]
  19. E. Dinar, A. Abo Riziq, C. Spindler, C. Erlick, G. Kiss, and Y. Rudich, “The complex refractive index of atmospheric and model humiclike substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS),” Faraday Discuss. 137, 279–295 (2008). [CrossRef] [PubMed]
  20. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. R. Flannery, Numerical Recipes, the Art of Scientific Computing, 3rd ed. (Cambridge University, 2007).
  21. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  22. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation of state calculations by fast computing machines,” J. Chem. Phys. 21, 1087–1092 (1953). [CrossRef]
  23. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983). [CrossRef] [PubMed]
  24. S. Kirkpatrick, “Optimization by simulated annealing: quantitative studies,” J. Stat. Phys. 34, 975–986 (1984). [CrossRef]
  25. X.-H. Song and P. K. Hopke, “Analysis of source contributions to the ambient aerosol sample by simulated annealing,” Chemom. Intell. Lab. Syst. 34, 275–281 (1996). [CrossRef]
  26. K. Arai and X. Liang, “Method for estimation of refractive index and size distribution of aerosol using direct and diffuse solar irradiance and aureole by means of simulated annealing,” Adv. Space Res. 32, 2165–2174 (2003). [CrossRef]
  27. L. Ma, L. Kranendonk, W. Cai, Y. Zhao, and J. Baba, “Application of simulated annealing for simultaneous retrieval of particle size distribution and refractive index,” J. Aerosol Sci. 40, 588–596 (2009). [CrossRef]
  28. A. Abo Riziq, M. Trainic, C. Erlick, E. Segre, and Y. Rudich, “Extinction efficiencies of coated absorbing aerosols measured with cavity ring down aerosol spectrometry,” Atmos. Chem. Phys. 8, 1823–1833 (2008). [CrossRef]
  29. O. Toon and T. Ackerman, “Algorithms for the calculation of scattering by stratified spheres,” Appl. Opt. 20, 3657–3660(1981). [CrossRef] [PubMed]
  30. S. Twomey, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements (Dover, 1977).
  31. I. Veselovskii, A. Kolgotin, D. Müller, and D. N. Whiteman, “Information content of multiwavelength lidar data with respect to microphysical particle properties derived from eigenvalue analysis,” Appl. Opt. 44, 5292–5303 (2005). [CrossRef] [PubMed]
  32. I. Veselovskii, M. Korenskii, V. Griaznov, D. N. Whiteman, M. McGill, G. Roy, and L. Bissonnette, “Information content of data measured with a multiple-field-of-view lidar,” Appl. Opt. 45, 6839–6848 (2006). [CrossRef] [PubMed]
  33. O. Dubovik, B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker, “Non-spherical aerosol retrieval method employing light scattering by spheroids,” Geophys. Res. Lett. 29, 1415–1418 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited