OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 22 — Aug. 1, 2011
  • pp: 4393–4402

Simultaneous retrieval of the complex refractive indices of the core and shell of coated aerosol particles from extinction measurements using simulated annealing

Carynelisa Erlick, Mitch Haspel, and Yinon Rudich  »View Author Affiliations


Applied Optics, Vol. 50, Issue 22, pp. 4393-4402 (2011)
http://dx.doi.org/10.1364/AO.50.004393


View Full Text Article

Enhanced HTML    Acrobat PDF (286 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Simultaneously retrieving the complex refractive indices of the core and shell of coated aerosol particles given the measured extinction efficiency as a function of particle dimensions (core diameter and coated diameter) is much more difficult than retrieving the complex refractive index of homogeneous aerosol particles. Not only must the minimization be performed over a four-parameter space, making it less efficient, but in addition the absolute value of the difference between the measured extinction and the calculated extinction does not have an easily distinguished global minimum. Rather, there are a number of local minima to which almost all conventional retrieval algorithms converge. In this work, we develop a new (to our knowledge) retrieval algorithm that employs the numerical method known as simulated annealing with an innovative “temperature” schedule. This study is limited only to spherical particles with a concentric shell and to cases in which the diameter of both the core and the coated particle are known. We find that when the top ranking particle sizes according to their information content are combined from separate experiments to make up the particle size distribution, the simulated annealing retrieval algorithm is quite robust and by far superior to a greedy random perturbation approach often used.

© 2011 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(010.1110) Atmospheric and oceanic optics : Aerosols

ToC Category:
Atmospheric and Oceanic Optics: Wave-front Sensing

History
Original Manuscript: February 17, 2011
Revised Manuscript: June 10, 2011
Manuscript Accepted: June 14, 2011
Published: July 27, 2011

Citation
Carynelisa Erlick, Mitch Haspel, and Yinon Rudich, "Simultaneous retrieval of the complex refractive indices of the core and shell of coated aerosol particles from extinction measurements using simulated annealing," Appl. Opt. 50, 4393-4402 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-22-4393

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited