OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 22 — Aug. 1, 2011
  • pp: 4417–4435

Joint segmentation and reconstruction of hyperspectral data with compressed measurements

Qiang Zhang, Robert Plemmons, David Kittle, David Brady, and Sudhakar Prasad  »View Author Affiliations


Applied Optics, Vol. 50, Issue 22, pp. 4417-4435 (2011)
http://dx.doi.org/10.1364/AO.50.004417


View Full Text Article

Enhanced HTML    Acrobat PDF (3561 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This work describes numerical methods for the joint reconstruction and segmentation of spectral images taken by compressive sensing coded aperture snapshot spectral imagers (CASSI). In a snapshot, a CASSI captures a two-dimensional (2D) array of measurements that is an encoded representation of both spectral information and 2D spatial information of a scene, resulting in significant savings in acquisition time and data storage. The reconstruction process decodes the 2D measurements to render a three- dimensional spatio-spectral estimate of the scene and is therefore an indispensable component of the spectral imager. In this study, we seek a particular form of the compressed sensing solution that as sumes spectrally homogeneous segments in the two spatial dimensions, and greatly reduces the number of unknowns, often turning the underdetermined reconstruction problem into one that is over determined. Numerical tests are reported on both simulated and real data representing compressed measurements.

© 2011 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(110.4234) Imaging systems : Multispectral and hyperspectral imaging
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:
Image Processing

History
Original Manuscript: April 19, 2011
Revised Manuscript: July 8, 2011
Manuscript Accepted: July 10, 2011
Published: July 27, 2011

Citation
Qiang Zhang, Robert Plemmons, David Kittle, David Brady, and Sudhakar Prasad, "Joint segmentation and reconstruction of hyperspectral data with compressed measurements," Appl. Opt. 50, 4417-4435 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-22-4417


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Jorgensen, J. Africano, K. Hamada, E. Stansbery, P. Sydney, and P. Kervin, “Physical properties of orbital debris from spectroscopic observations,” Adv. Space Res. 34, 1021–1025 (2004). [CrossRef]
  2. R. P. Lin, B. R. Dennis, G. J. Hurford, D. M. Smith, A. Zehnder, P. R. Harvey, D. W. Curtis, D. Pankow, P. Turin, M. Bester, A. Csillaghy, M. Lewis, N. Madden, H. F. Van Beek, M. Appleby, T. Raudorf, J. McTiernan, R. Ramaty, E. Schmahl, R. Schwartz, S. Krucker, R. Abiad, T. Quinn,P. Berg, M. Hashii, R. Sterling, R. Jackson, R. Pratt, R. D. Campbell, D. Malone, D. Landis, C. P. Barrington-Leigh, S. Slassi-Sennou, C. Cork, D. Clark, D. Amato, L. Orwig, R. Boyle, I. S. Banks, K. Shirey, A. K, Tolbert, D. Zarro, F. Snow, K. Thomsen, R. Henneck, A. McHedlishvili, P. Ming, F. Fivian, J. Jordan, R. Wanner, J. Crubb, J. Preble, M. Matranga, A. Benz, H. Hudson, R. C. Canfield, G. D. Holman, C. Crannell, T. Kosugi, A. G. Emslie, N. Vilmer, J. C. Brown, C. Johns-Krull, M. Aswchwanden, T. Metcalf, and A. Conway, “The Reuven Ramaty high-energy solar spectroscopic imager (RHESSI),” Sol. Phys. 210, 3–32(2002). [CrossRef]
  3. T. Pham, F. Bevilacqua, T. Spott, J. Dam, B. Tromberg, and S. Andersson-Engels, “Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging,” Appl. Opt. 39, 6487–6497 (2000). [CrossRef]
  4. H. Morris, C. Hoyt, and P. Treado, “Imaging spectrometers for fluorescence and Raman microscopy: acousto-optic and liquid crystal tunable filters,” Appl. Spectrosc. 48, 857–866 (1994). [CrossRef]
  5. J. Mooney, V. Vickers, M. An, and A. Brodzik, “High-throughput hyperspectral infrared camera,” J. Opt. Soc. Am. A 14, 2951–2961 (1997). [CrossRef]
  6. M. Gehm, R. John, D. Brady, R. Willett, and T. Schulz, “Single-shot compressive spectral imaging with a dual-disperser architecture,” Opt. Express 15, 14013–14027 (2007). [CrossRef] [PubMed]
  7. A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 47, B44–B51 (2008). [CrossRef] [PubMed]
  8. D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006). [CrossRef]
  9. D. Donoho and M. Elad, “Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization,” Proc. Natl. Acad. Sci. USA 100, 2197–2202 (2003). [CrossRef]
  10. E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509(2006). [CrossRef]
  11. J. Ball and L. Bruce, “Level set segmentation of remotely sensed hyperspectral images,” in Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2005), pp. 5638–5642. [CrossRef]
  12. R. Maksimovic, S. Stankovic, and D. Milovanovic, “Computed tomography image analyzer: 3D reconstruction and segmentation applying active contour models–′snakes′,” Int. J. Med. Inform. 58, 29–37 (2000). [CrossRef] [PubMed]
  13. J. Kent and K. Mardia, “Spatial classification using fuzzy membership models,” IEEE Trans. Pattern Anal. Machine Intell. 10, 659–671 (1988). [CrossRef]
  14. T. Chan and L. Vese, “Active contours without edges,” IEEE Trans. Image Process. 10, 266–277 (2001). [CrossRef]
  15. F. Li, M. Ng, and R. Plemmons, “Coupled segmentation and denoising/deblurring models for hyperspectral material identification,” in Numerical Linear Algebra with Applications (Wiley, 2010).
  16. F. Li, M. Ng, R. Plemmons, S. Prasad, and Q. Zhang, “Hyperspectral image segmentation, deblurring, and spectral analysis for material identification,” Proc. SPIE 7701, 770103(2010).
  17. R. Ramlau and W. Ring, “A Mumford-Shah level-set approach for the inversion and segmentation of x-ray tomography data,” J. Comput. Phys. 221, 539–557 (2007). [CrossRef]
  18. Z. Xing, Department of Electrical and Computer Engineering, Duke University, Durham, NC, M. Zhou, A. Castrodad, G. Sapiro, and L. Carin, are preparing a manuscript to be called “Dictionary learning for noisy and incomplete hyperspectral images.”
  19. A. Chambolle, “An algorithm for total variation minimization and applications,” J. Mathematical Imaging and Vision 20, 89–97 (2004). [CrossRef]
  20. S. Deans, The Radon Transform and Some of Its Applications (Wiley, 1983).
  21. S. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE Trans. Signal Process. 41, 3397–3415 (1993). [CrossRef]
  22. J. Tropp, “Greed is good: algorithmic results for sparse approximation,” IEEE Trans. Inf. Theory 50, 2231–2242 (2004). [CrossRef]
  23. Y. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition,” in 1993 Conference Record of The Twenty-Seventh Asilomar Conference on Signals, Systems and Computers (IEEE, 1993), pp. 40–44.
  24. R. Maleh, A. Gilbert, and M. Strauss, “Sparse gradient image reconstruction done faster,” in IEEE International Conference on Image Processing, 2007. ICIP 2007 (IEEE, 2007), Vol.  2. pp. 77–80.
  25. Q. Zhang, H. Wang, R. Plemmons, and V. Pauca, “Tensor methods for hyperspectral data analysis: a space object material identification study,” J. Opt. Soc. Am. A 25, 3001–3012(2008). [CrossRef]
  26. P. Gader, A. Zare, R. Close, and G. Tuell, “Co-registered hyperspectral and LiDAR Long Beach, Mississippi data collection,” University of Florida, University of Missouri, and Optech International (2010).
  27. C. Cull, K. Choi, D. Brady, and T. Oliver, “Identification of fluorescent beads using a coded aperture snapshot spectral imager,” Appl. Opt. 49, B59–B70 (2010). [CrossRef] [PubMed]
  28. J. Bioucas-Dias and M. Figueiredo, “A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16, 2992–3004(2007). [CrossRef] [PubMed]
  29. D. Kittle, K. Choi, A. Wagadarikar, and D. Brady, “Multiframe image estimation for coded aperture snapshot spectral imagers,” Appl. Opt. 49, 6824–6833 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited