OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 22 — Aug. 1, 2011
  • pp: 4489–4498

Radiation pressure cross sections and optical forces over negative refractive index spherical particles by ordinary Bessel beams

Leonardo A. Ambrosio and Hugo E. Hernández-Figueroa  »View Author Affiliations


Applied Optics, Vol. 50, Issue 22, pp. 4489-4498 (2011)
http://dx.doi.org/10.1364/AO.50.004489


View Full Text Article

Enhanced HTML    Acrobat PDF (1510 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

When impinged by an arbitrary laser beam, lossless and homogeneous negative refractive index (NRI) spherical particles refract and reflect light in an unusual way, giving rise to different scattered and internal fields when compared to their equivalent positive refractive index particles. In the generalized Lorenz–Mie theory, the scattered fields are dependent upon the Mie scattering coefficients, whose values must reflect the metamaterial behavior of an NRI scatterer, thus leading to new optical properties such as force and torque. In this way, this work is devoted to the analysis of both radial and longitudinal optical forces exerted on lossless and simple NRI particles by zero-order Bessel beams, revealing how the force profiles are changed whenever the refractive index becomes negative.

© 2011 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(290.4020) Scattering : Mie theory
(350.3618) Other areas of optics : Left-handed materials
(160.3918) Materials : Metamaterials
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Geometric Optics

History
Original Manuscript: April 4, 2011
Revised Manuscript: June 15, 2011
Manuscript Accepted: June 16, 2011
Published: July 27, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Leonardo A. Ambrosio and Hugo E. Hernández-Figueroa, "Radiation pressure cross sections and optical forces over negative refractive index spherical particles by ordinary Bessel beams," Appl. Opt. 50, 4489-4498 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-22-4489


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970). [CrossRef]
  2. A. Ashkin, “Atomic-beam deflection by resonance-radiation pressure,” Phys. Rev. Lett. 25, 1321–1324 (1970). [CrossRef]
  3. A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971). [CrossRef]
  4. A. Ashkin and J. M. Dziedzic, “Stability of optical levitation by radiation pressure,” Appl. Phys. Lett. 24, 586–588 (1974). [CrossRef]
  5. A. Ashkin and J. M. Dziedzic, “Optical levitation in high vacuum,” Appl. Phys. Lett. 28, 333–335 (1976). [CrossRef]
  6. A. Ashkin and J. M. Dziedzic, “Feedback stabilization of optically levitated particles,” Appl. Phys. Lett. 30, 202–204 (1977). [CrossRef]
  7. A. Ashkin and J. M. Dziedzic, “Observation of light scattering from nonspherical particles using optical levitation,” Appl. Opt. 19, 660–668 (1980). [CrossRef] [PubMed]
  8. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef] [PubMed]
  9. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987). [CrossRef] [PubMed]
  10. M. W. Berns, W. H. Wright, B. J. Tromberg, G. A. Profeta, J. J. Andrews, and R. J. Walter, “Use of a laser-induced optical force trap to study chromosome movement on the mitotic spindle,” Proc. Natl. Acad. Sci. USA 86, 4539–4543 (1989). [CrossRef] [PubMed]
  11. S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271, 795–799(1996). [CrossRef] [PubMed]
  12. G. D. Wright, J. Arlt, W. C. K. Poon, and N. D. Read, “Experimentally manipulating fungi with optical tweezers,” Mycoscience 48, 15–19 (2007). [CrossRef]
  13. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. USA 94, 4853–4860 (1997). [CrossRef] [PubMed]
  14. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004). [CrossRef]
  15. D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209, 171–176(2004). [CrossRef] [PubMed]
  16. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992). [CrossRef] [PubMed]
  17. L. A. Ambrosio and H. E. Hernández-Figueroa, “Inversion of gradient forces for high refractive index particles in optical trapping,” Opt. Express 18, 5802–5808 (2010). [CrossRef] [PubMed]
  18. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001). [CrossRef]
  19. V. Garces-Chavez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004). [CrossRef]
  20. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002). [CrossRef] [PubMed]
  21. G. Mie, “Beiträge zur Optik Trüber Medien, Speziell Kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908). [CrossRef]
  22. G. Gouesbet and G. Gréhan, “Sur la généralisation de la théorie de Lorenz–Mie,” J. Opt. 13, 97–103 (1982). [CrossRef]
  23. B. Maheu, G. Gouesbet, and G. Gréhan, “A concise presentation of the generalized Lorenz–Mie theory for arbitrary incident profile,” J. Opt. 19, 59–67 (1988). [CrossRef]
  24. G. Gouesbet, G. Gréhan, and B. Maheu, “Scattering of a Gaussian beam by a Mie scatter center using a Bromwich formalism,” J. Opt. 16, 83–93 (1985). [CrossRef]
  25. G. Gouesbet, G. Gréhan, and B. Maheu, “Expressions to compute the coefficients gnm in the generalized Lorenz–Mie theory using finite series,” J. Opt. 19, 35–48 (1988). [CrossRef]
  26. G. Gouesbet, G. Gréhan, and B. Maheu, “Localized interpretation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990). [CrossRef]
  27. K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized Lorenz–Mie theory,” Appl. Opt. 37, 4218–4225 (1998). [CrossRef]
  28. G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994). [CrossRef]
  29. G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994). [CrossRef]
  30. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968). [CrossRef]
  31. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000). [CrossRef] [PubMed]
  32. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef] [PubMed]
  33. N. Engheta and R. Ziolkowski, “A positive future for double-negative metamaterials,” IEEE Trans. Microwave Theory Tech. 53, 1535–1556 (2005). [CrossRef]
  34. N. Engheta and R. Ziolkowski, Metamaterials—Physics and Engineering Explorations (IEEE, Wiley-Interscience, Wiley & Sons, 2006).
  35. C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (IEEE, Wiley-Interscience, Wiley & Sons, 2006).
  36. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623(2005). [CrossRef]
  37. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). [CrossRef] [PubMed]
  38. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]
  39. S. Zouhdi, A. Sihvola, and A. P. Vinogradov, Metamaterials and Plasmonics: Fundamentals, Modeling, Applications (Springer, NATO, 2008).
  40. L. A. Ambrosio and H. E. Hernández-Figueroa, “Trapping double-negative particles in the ray optics regime using optical tweezers with focused beams,” Opt. Express 17, 21918–21924 (2009). [CrossRef] [PubMed]
  41. L. A. Ambrosio and H. E. Hernández-Figueroa, “Fundamentals of negative refractive index optical trapping: forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz–Mie theory,” Biomed. Opt. Express 1, 1284–1301 (2010). [CrossRef]
  42. L. A. Ambrosio and H. E. Hernández-Figueroa, “Gradient forces on double-negative particles in optical tweezers using Bessel beams in the ray optics regime,” Opt. Express 18, 24287–24292 (2010). [CrossRef] [PubMed]
  43. M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medina, and L. Chantada, “Optical forces on small magnetodielectric particles,” Opt. Express 18, 11428–11443 (2010). [CrossRef] [PubMed]
  44. L. A. Ambrosio and H. E. Hernández-Figueroa, “Integral localized approximation description of ordinary Bessel beams in the generalized Lorenz–Mie theory and application to optical forces,” Biomed. Opt. Express 2, 1893–1906 (2011). [CrossRef] [PubMed]
  45. G. Milne, K. Dholakia, D. McGloin, K. Volke-Sepulveda, and P. Zemánek, “Transverse particle dynamics in a Bessel beam,” Opt. Express 15, 13972–13987 (2007). [CrossRef] [PubMed]
  46. C. F. Bohren and D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, Wiley & Sons, 1983).
  47. K. R. Fen, “Diffusion des faisceaux feuille laser par une particule sphérique et applications aux ecoulements diphasiques,” Ph.D. thesis (Faculté des Sciences de L’Université de Rouen, 1995).
  48. B. García-Cámara, F. Moreno, F. González, J. M. Saiz, and G. Videen, “Light scattering resonances in small particles with electric and magnetic properties,” J. Opt. Soc. Am. A 25, 327–334 (2008). [CrossRef]
  49. “Non-Rayleigh limit of the Lorenz–Mie solution and suppression of scattering by spheres of negative refractive index,” Phys. Rev. A 80, 013808 (2009). [CrossRef]
  50. L. A. Ambrosio and H. E. Hernández-Figueroa are preparing a manuscript to be called “The Mie scattering coefficients for double-negative spherical particles: emphasizing the metamaterial.”
  51. K. F. Ren, G. Gréhan, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz–Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354(1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited