OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 22 — Aug. 1, 2011
  • pp: 4529–4534

Extraordinary optical transmission in one-dimensional gold gratings: near- and far-field analysis

F. Romanato, T. Ongarello, G. Zacco, D. Garoli, P. Zilio, and M. Massari  »View Author Affiliations


Applied Optics, Vol. 50, Issue 22, pp. 4529-4534 (2011)
http://dx.doi.org/10.1364/AO.50.004529


View Full Text Article

Enhanced HTML    Acrobat PDF (500 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

One-dimensional arrays of nanoslits fabricated on silicon nitride membranes show extraordinary optical transmission. Optical characterization techniques have been used to characterize the transmission spectra and the near-field optical configuration. Experimental results have been compared with numerical simulations in order to elucidate the different modes of light propagation. Near- and far- field optical distribution is studied as a function of the polarization of light.

© 2011 Optical Society of America

OCIS Codes
(220.3740) Optical design and fabrication : Lithography
(250.5403) Optoelectronics : Plasmonics
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optoelectronics

History
Original Manuscript: March 29, 2011
Revised Manuscript: July 1, 2011
Manuscript Accepted: July 1, 2011
Published: July 29, 2011

Citation
F. Romanato, T. Ongarello, G. Zacco, D. Garoli, P. Zilio, and M. Massari, "Extraordinary optical transmission in one-dimensional gold gratings: near- and far-field analysis," Appl. Opt. 50, 4529-4534 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-22-4529


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  2. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007). [CrossRef] [PubMed]
  3. K. Busch, G. Von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007). [CrossRef]
  4. Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280, 10–15 (2007). [CrossRef]
  5. A. Barbara, P. Quemerais, E. Bustarett, and T. Lopez-Rios, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66, 161403 (2002). [CrossRef]
  6. S. Collins, G. Vincent, R. Haidar, N. Bardou, S. Rommeluère, and J. Pelouard, “Nearly perfect fano transmission resonances trough nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010). [CrossRef]
  7. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005). [CrossRef]
  8. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010). [CrossRef]
  9. D. Crouse and P. Keshavareddy, “Role of optical and surface plasmon modes in enhanced transmission and applications,” Opt. Express 13, 7760–7771 (2005). [CrossRef] [PubMed]
  10. D. Crouse and P. Keshavareddy, “Polarization independent enhanced optical transmission in one-dimensional gratings and device applications,” Opt. Express 15, 1415–1427 (2007). [CrossRef] [PubMed]
  11. H. F. Ghaemi, T. Tineke, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782(1998). [CrossRef]
  12. A. Degiron, H. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004). [CrossRef]
  13. S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63, 033107 (2001). [CrossRef]
  14. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651(2004). [CrossRef] [PubMed]
  15. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999). [CrossRef]
  16. F. J. Garcia-Vidal and L. Marin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002). [CrossRef]
  17. P. Zilio, D. Sammito, G. Zacco, and F. Romanato, “Absorption profile modulation by means of 1D digital plasmonic gratings,” Opt. Express 18, 19558 (2010). [CrossRef] [PubMed]
  18. Finite Elements code COMSOL Multiphysics, RF package, version 3.5a.
  19. F. Marquier, J. J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13, 70–76(2005). [CrossRef] [PubMed]
  20. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslits apertures,” Phys. Rev. Lett. 95, 263902 (2005). [CrossRef]
  21. H. Raether, Surface Plasmons (Springer-Verlag, 1988).
  22. T. Ongarello, F. Romanato, P. Zilio, and M. Massari, “Polarization independence of extraordinary transmission trough 1D metallic gratings,” Opt. Express 19, 9426–9433(2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited