OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 22 — Aug. 1, 2011
  • pp: 4535–4549

Model of phytoplankton absorption based on three size classes

Robert J. W. Brewin, Emmanuel Devred, Shubha Sathyendranath, Samantha J. Lavender, and Nick J. Hardman-Mountford  »View Author Affiliations


Applied Optics, Vol. 50, Issue 22, pp. 4535-4549 (2011)
http://dx.doi.org/10.1364/AO.50.004535


View Full Text Article

Enhanced HTML    Acrobat PDF (4669 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using the phytoplankton size-class model of Brewin et al. [ Ecol. Model. 221, 1472 (2010)], the two- population absorption model of Sathyendranath et al. [ Int. J. Remote. Sens. 22, 249 (2001)] and Devred et al. [ J. Geophys. Res. 111, C03011 (2006)] is extended to three populations of phytoplankton, namely, picophytoplankton, nanophytoplankton, and microphytoplankton. The new model infers total and size-dependent phytoplankton absorption as a function of the total chlorophyll-a concentration. A main characteristic of the model is that all the parameters that describe it have biological or optical interpretation. The three-population model performs better than the two-population model at retrieving total phytoplankton absorption. Accounting for the contributions of picophytoplankton and nanophytoplankton, rather than the combination of both as in the two-population model, improved significantly the retrieval of phytoplankton absorption at low chlorophyll-a concentrations. Class-dependent specific absorption of phytoplankton derived using the model compares well with previously published models. However, the model presented in this paper provides the specific absorption of three size classes and is applicable to a continuum of chlorophyll-a concentrations. Absorption obtained from remotely sensed chlorophyll-a using our model compares well with in situ absorption measurements.

© 2011 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.7340) Atmospheric and oceanic optics : Water
(010.1030) Atmospheric and oceanic optics : Absorption
(010.5630) Atmospheric and oceanic optics : Radiometry
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: August 20, 2010
Revised Manuscript: March 3, 2011
Manuscript Accepted: May 5, 2011
Published: July 29, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Robert J. W. Brewin, Emmanuel Devred, Shubha Sathyendranath, Samantha J. Lavender, and Nick J. Hardman-Mountford, "Model of phytoplankton absorption based on three size classes," Appl. Opt. 50, 4535-4549 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-22-4535


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. J. W. Brewin, S. Sathyendranath, T. Hirata, S. Lavender, R. M. Barciela, and N. J. Hardman-Mountford, “A three-component model of phytoplankton size class for the Atlantic Ocean,” Ecol. Modelling 221, 1472–1483 (2010). [CrossRef]
  2. S. Sathyendranath, V. Stuart, G. Cota, H. Mass, and T. Platt, “A two-component model of phytoplankton absorption in the open ocean: theory and applications,” Int. J. Remote Sens. 22, 249–273 (2001). [CrossRef]
  3. E. Devred, S. Sathyendranath, V. Stuart, H. Mass, O. Ulloa, and T. Platt, “Remote sensing of phytoplankton pigments: a comparison of empirical and theoretical approaches,” J. Geophys. Res. 111, C03011 (2006). [CrossRef]
  4. J. T. O. Kirk, “A theoretical analysis of the contribution of algal cells to the attenuation of light within waters. I. General treatment of suspensions of living cells,” New Phytol. 75, 1–20(1975). [CrossRef]
  5. A. Morel, “Available, usable, and stored radiant energy in relation to marine photosynthesis,” Deep-Sea Res. 25, 673–688(1978). [CrossRef]
  6. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters),” J. Geophys. Res. 93, 10749–10768 (1988). [CrossRef]
  7. S. Sathyendranath and T. Platt, “The spectral irradiance field at the surface and in the interior of the ocean: a model for applications in oceanography and remote sensing,” J. Geophys. Res. 93, 9270–9280 (1988). [CrossRef]
  8. T. Anderson, “A spectrally averaged model of light penetration and photosynthesis,” Limnol. Oceanogr. 38, 1403–1419 (1993). [CrossRef]
  9. T. Platt and A. D. Jassby, “The relationship between photosynthesis and light for natural assemblages of coastal marine-phytoplankton,” J. Phycol. 12, 421–430 (1976). [CrossRef]
  10. D. A. Kiefer and B. G. Mitchell, “A simple steady state description of phytoplankton growth based on absorption cross section and quantum efficiency,” Limnol. Oceanogr. 28, 770–776(1983). [CrossRef]
  11. T. Platt and S. Sathyendranath, “Oceanic primary production: estimation by remote sensing at local and regional scales,” Science 241, 1613–1620 (1988). [CrossRef] [PubMed]
  12. T. J. Smyth, G. F. Moore, T. Hirata, and J. Aiken, “Semianalytical model for the derivation of ocean color inherent optical properties: description, implementation, and performance assessment,” Appl. Opt. 45, 8116–8131 (2006). [CrossRef] [PubMed]
  13. J. Marra, C. Trees, and J. O’Reilly, “Phytoplankton pigment absorption: a strong predictor of primary productivity in the surface ocean,” Deep-Sea Res., Part I 54, 155–163 (2007). [CrossRef]
  14. A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47, 404–417 (2002). [CrossRef]
  15. T. Hirata, J. Aiken, N. J. Hardman-Mountford, and T. J. Smyth, “An absorption model to derive phytoplankton size classes from satellite ocean colour,” Remote Sens. Environ. 112, 3153–3159 (2008). [CrossRef]
  16. T. Hirata, N. J. Hardman-Mountford, R. Barlow, T. Lamont, R. J. W. Brewin, T. J. Smyth, and J. Aiken, “An inherent optical property approach to the estimation of size-specific photosynthetic rates in eastern boundary upwelling zones from satellite ocean colour: an initial assessment,” Prog. Oceanogr. 83, 393–397 (2009). [CrossRef]
  17. L. Prieur and S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981). [CrossRef]
  18. J. S. Cleveland, “Regional models for phytoplankton absorption as a function of chlorophyll a concentration,” J. Geophys. Res. 100, 13333–13344 (1995). [CrossRef]
  19. V. A. Lutz, S. Sathyendranath, and E. J. H. Head, “Absorption coefficient of phytoplankton: regional variations in the North Atlantic,” Mar. Ecol. Prog. Ser. 135, 197–213 (1996). [CrossRef]
  20. A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, “Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations,” J. Geophys. Res. 109, C11010 (2004). [CrossRef]
  21. J. T. O. Kirk, “A theoretical analysis of the contribution of algal cells to the attenuation of light within waters. II. Spherical cells,” New Phytol. 75, 21–36 (1975). [CrossRef]
  22. A. Morel and A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28, 1375–1393(1981). [CrossRef]
  23. S. Sathyendranath, S. L. Lazzara, and L. Prieur, “Variations in the spectral values of specific absorption of phytoplankton,” Limnol. Oceanogr. 32, 403–415 (1987). [CrossRef]
  24. N. Hoepffner and S. Sathyendranath, “Effect of pigment composition on absorption properties of phytoplankton,” Mar. Ecol. Prog. Ser. 73, 11–23 (1991). [CrossRef]
  25. S. E. Lohrenz, A. D. Weidemann, and M. Tuel, “Phytoplankton spectral absorption as influenced by community size structure and pigment composition,” J. Plankton Res. 25, 35–l61 (2003). [CrossRef]
  26. A. Morel, “Light and marine photosynthesis: A spectral model with geochemical and climatological implications,” Prog. Oceanogr. 26, 263–306 (1991). [CrossRef]
  27. A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995). [CrossRef]
  28. A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with the chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998). [CrossRef]
  29. L. N. M. Duysens, “The flattening of the absorption spectrum of suspensions as compared to that of solutions,” Biochim. Biophys. Acta 19, 1–12 (1956). [CrossRef] [PubMed]
  30. J. Uitz, Y. Huot, F. Bruyant, M. Babin, and H. Claustre, “Relating phytoplankton photophysiological properties to community structure on large scales,” Limnol. Oceanogr. 53, 614–630 (2008). [CrossRef]
  31. A. M. Waite and P. S. Hill, “Flocculation and phytoplankton cell size can alter Th234-based estimates of the vertical flux of particulate organic carbon in the sea,” Mar. Chem. 100, 366–375 (2006). [CrossRef]
  32. F. Vidussi, H. Claustre, B. B. Manca, A. Luchetta, and J. C. Marty, “Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter,” J. Geophys. Res. 106, 19939–19956 (2001). [CrossRef]
  33. J. Uitz, H. Claustre, A. Morel, and S. B. Hooker, “Vertical distribution of phytoplankton communities in open ocean: an assessment based on surface chlorophyll,” J. Geophys. Res. 111, CO8005 (2006). [CrossRef]
  34. H. Claustre, M. Babin, D. Merien, J. Ras, L. Prieur, S. Dallot, O. Prasil, and H. Dousova, “Towards a taxon-specific parameterization of bio-optical models of primary production: a case study in the North Atlantic,” J. Geophys. Res. 110, C07S12(2005). [CrossRef]
  35. P. J. Werdell and S. W. Bailey, “An improved in situ bio-optical data set for ocean colour algorithm development and satellite data production validation,” Remote Sens. Environ. 98, 122–140 (2005). [CrossRef]
  36. J. Aiken, Y. Pradhan, R. Barlow, S. Lavender, A. Poulton, P. Holligan, and N. J. Hardman-Mountford, “Phytoplankton pigments and functional types in the Atlantic Ocean: a decadal assessment, 1995–2005. AMT Special Issue,” Deep-Sea Res., Part II 56, 899–917 (2009). [CrossRef]
  37. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998). [CrossRef]
  38. J. Werdell, “Global bio-optical algorithms for ocean color satellite applications,” EOS Trans. AGU 90, 4 (2009). [CrossRef]
  39. W. H. Press, S. A. Keukolsky, W. T. Vettering, and B. P. Flannery, Levenberg-Marquard Method in Numerical Recipes in C: the Art of Scientific Computation (Cambridge Univeristy, 1992).
  40. F. Partensky, N. Hoepffner, W. K. W. Li, O. Ulloa, and D. Vaulot, “Photoacclimation of Prochlorococcus sp (Prochlorophyta) strains isolated from the North Atlantic and the Mediterranean Sea,” Plant Physiol. 101, 285–296 (1993). [CrossRef] [PubMed]
  41. Z. V. Finkel, “Light absorption and size scaling of light-limited metabolism in marine diatoms,” Limnol. Oceanogr. 46, 86–94 (2001). [CrossRef]
  42. M. Babin, A. Morel, H. Claustre, and A. Bricaud, “Nitrogen- and irradiance- dependant variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic marine systems,” Deep-Sea Res., Part I 43, 1241–1272 (1996). [CrossRef]
  43. A. M. Ciotti and A. Bricaud, “Retrievals of a size parameter for phytoplankton and spectral light absorption by colored detrital matter from water-leaving radiances at SeaWiFS channels in a continental shelf region off Brazil,” Limnol. Oceanogr. Methods 4, 237–253 (2006). [CrossRef]
  44. C. S. Yentsch and D. A. Phinney, “A bridge between ocean optics and microbial ecology,” Limnol. Oceanogr. 34, 1694–1704(1989). [CrossRef]
  45. V. Stuart, S. Sathyendranath, T. Platt, H. Mass, and B. Irwin, “Pigments and species composition of natural phytoplankton populations: effects on the absorption spectra,” J. Plankton Res. 20, 187–217 (1998). [CrossRef]
  46. V. Stuart, S. Sathyendranath, E. J. H. Head, T. Platt, B. Irwin, and H. Mass, “Bio-optical characteristics of diatom and prymnesiophyte populations in the Labrador Sea,” Mar. Ecol. Prog. Ser. 201, 91–106 (2000). [CrossRef]
  47. S. Sathyendranath, L. Watts, E. Devred, T. Platt, C. Caverhill, and H. Mass, “Discrimination of diatoms from other phytoplankton using ocean-colour data,” Mar. Ecol. Prog. Ser. 272, 59–68 (2004). [CrossRef]
  48. S. W. Jeffrey and R. F. C. Mantoura, “Development of pigment methods for oceanography: SCOR-supported working groups and objectives,” in Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods, S.W.Jeffrey, R.F. C.Mantoura, and S.W.Wright, eds. (UNESCO Publishing, 1997), pp 38–84.
  49. R. Barlow, J. Aiken, P. Holligan, D. G. Cummings, S. Maritorena, and S. B. Hooker, “Phytoplankton pigment and absorption characteristics along meridional transects in the Atlantic Ocean,” Deep-Sea Res., Part I 49, 637–660 (2002). [CrossRef]
  50. A. Morel, Y. H. Ahn, F. Partensky, D. Vaulot, and H. Claustre, “Prochlorococcus and Synechococcus: a comparative study of their optical properties in relation to their size and pigmentation,” J. Mar. Res. 51, 617–649 (1993). [CrossRef]
  51. L. R. Moore, R. Goericke, and S. W. Chisholm, “Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties,” Mar. Ecol. Prog. Ser. 116, 259–275(1995). [CrossRef]
  52. C. S. Roesler, “Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique,” Limnol. Oceanogr. 43, 1649–1660 (1998). [CrossRef]
  53. A. M. Ciotti, A. Bricaud, and S. A. Gaeta, “Retrieval of a size parameter for phytoplankton from spectral water-leaving radiances in the SeaWiFS channels,” presented at Ocean Optics XVII, Freemantle, Australia, 25–29 October 2004.
  54. J. Uitz, H. Claustre, F. Brian Griffiths, J. Ras, N. Garcia, and V. Sandroni, “A phytoplankton class-specific primary production model applied to the Kerguelen Islands region (Southern Ocean),” Deep-Sea Res., Part. I 56, 541–560 (2009). [CrossRef]
  55. J. Uitz, H. Claustre, B. Gentili, and D. Stramski, “Phytoplankton class-specific primary production in the world’s oceans: seasonal and interannual variability from satellite observations,” Global Biogeochem. Cycles 24, GB3016 (2010). [CrossRef]
  56. N. J. Hardman-Mountford, T. Hirata, K. A. Richardson, and J. Aiken, “An objective methodology for the classification of ecological pattern into biomes and provinces for the pelagic ocean,” Remote Sens. Environ. 112, 3341–3352(2008). [CrossRef]
  57. E. Devred, S. Sathyendranath, and T. Platt, “Decadal changes in ecological provinces of the Northwest Atlantic Ocean revealed by satellite observations,” Geophys. Res. Lett. 36, L19607 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited