OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 22 — Aug. 1, 2011
  • pp: D12–D20

Exploration of the multiparameter space of nanosecond-laser damage growth in fused silica optics

Raluca A. Negres, Zhi M. Liao, Ghaleb M. Abdulla, David A. Cross, Mary A. Norton, and Christopher W. Carr  »View Author Affiliations

Applied Optics, Vol. 50, Issue 22, pp. D12-D20 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (827 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Historically, the rate at which laser-induced damage sites grow on the exit surface of SiO 2 optics under subsequent illumination with nanosecond-laser pulses of any wavelength was believed to depend solely on laser fluence. We demonstrate here that much of the scatter in previous growth observations was due to additional parameters that were not previously known to affect growth rate, namely the temporal pulse shape and the size of a site. Furthermore, the remaining variability observed in the rate at which sites grow is well described in terms of Weibull statistics. The effects of site size and laser fluence may both be expressed orthogonally in terms of Weibull coefficients. In addition, we employ a clustering algorithm to explore the multiparameter growth space and expose average growth trends. Conversely, this analysis approach also identifies sites likely to exhibit growth rates outside the norm. The ability to identify which sites are likely to grow abnormally fast in advance of the manifestation of such behavior will significantly enhance the accuracy of predictive models over those based on average growth behaviors.

© 2011 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(160.4670) Materials : Optical materials

Original Manuscript: April 15, 2011
Revised Manuscript: July 7, 2011
Manuscript Accepted: July 8, 2011
Published: July 21, 2011

Raluca A. Negres, Zhi M. Liao, Ghaleb M. Abdulla, David A. Cross, Mary A. Norton, and Christopher W. Carr, "Exploration of the multiparameter space of nanosecond-laser damage growth in fused silica optics," Appl. Opt. 50, D12-D20 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. R. Kozlowski, R. P. Mouser, S. M. Maricle, P. J. Wegner, and T. L. Weiland, “Laser damage performance of fused silica optical components measured on the beamlet laser at 351 nm,” Proc. SPIE 3578, 436–445 (1999). [CrossRef]
  2. A. Conder, J. Chang, L. Kegelmeyer, M. Spaeth, and P. Whitman, “Final optics damage inspection (FODI) for the National Ignition Facility,” Proc. SPIE 7797, 77970P (2010). [CrossRef]
  3. H. Bercegol, A. Boscheron, J. M. Di-Nicola, E. Journot, L. Lamaignere, J. Neauport, and G. Raze, “Laser damage phenomena relevant to the design and operation of an ICF laser driver,” J. Phys. Conf. Ser. 112, 032013 (2008). [CrossRef]
  4. S. G. Demos and M. Staggs, “Application of fluorescence microscopy for noninvasive detection of surface contamination and precursors to laser-induced damage,” Appl. Opt. 41, 1977–1983 (2002). [CrossRef] [PubMed]
  5. F. Bonneau, P. Combis, J. L. Rullier, M. Commandré, A. During, J. Y. Natoli, M. J. Pellin, M. R. Savina, E. Cottancin, and M. Pellarin, “Observation by photothermal microscopy of increased silica absorption in laser damage induced by gold nanoparticles,” Appl. Phys. Lett. 83, 3855–3857 (2003). [CrossRef]
  6. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011). [CrossRef]
  7. C. W. Carr, M. J. Matthews, J. D. Bude, and M. L. Spaeth, “The effect of laser pulse duration on laser-induced damage in KDP and SiO2,” Proc. SPIE 6403, 64030K (2006). [CrossRef]
  8. C. W. Carr, J. B. Trenholme, and M. L. Spaeth, “Effect of temporal pulse shape on optical damage,” Appl. Phys. Lett. 90, 041110 (2007). [CrossRef]
  9. C. W. Carr, D. Cross, M. D. Feit, and J. D. Bude, “Using shaped pulses to probe energy deposition during laser-induced damage of SiO2 surfaces,” Proc. SPIE 7132, 71321C (2008). [CrossRef]
  10. S. G. Demos, M. Staggs, and M. R. Kozlowski, “Investigation of processes leading to damage growth in optical materials for large-aperture lasers,” Appl. Opt. 41, 3628–3633 (2002). [CrossRef] [PubMed]
  11. S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett. 82, 3230–3232 (2003). [CrossRef]
  12. R. A. Negres, M. W. Burke, P. DeMange, S. B. Sutton, M. D. Feit, and S. G. Demos, “Thermal imaging investigation of modified fused silica at surface damage sites for understanding the underlying mechanisms of damage growth,” Proc. SPIE 6403, 640306 (2006). [CrossRef]
  13. R. A. Negres, M. W. Burke, S. B. Sutton, P. DeMange, M. D. Feit, and S. G. Demos, “Evaluation of UV absorption coefficient in laser-modified fused silica,” Appl. Phys. Lett. 90, 061115 (2007). [CrossRef]
  14. H. Bercegol, P. Grua, D. Hebert, and J. P. Morreeuw, “Progress in the understanding of fracture related laser damage of fused silica,” Proc. SPIE 6720, 672003 (2007). [CrossRef]
  15. M. A. Stevens-Kalceff and J. Wong, “Distribution of defects induced in fused silica by ultraviolet laser pulses before and after treatment with a CO2 laser,” J. Appl. Phys. 97, 113519(2005). [CrossRef]
  16. J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352, 255–272 (2006). [CrossRef]
  17. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004). [CrossRef] [PubMed]
  18. T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94, 151114 (2009). [CrossRef]
  19. R. A. Negres, M. D. Feit, P. DeMange, J. D. Bude, and S. G. Demos, “Pump and probe damage testing for investigation of transient material modifications associated with laser damage in optical materials,” Proc. SPIE 6720, 672019(2007). [CrossRef]
  20. R. A. Negres, M. D. Feit, and S. G. Demos, “Dynamics of material modifications following laser-breakdown in bulk fused silica,” Opt. Express 18, 10642–10649 (2010). [CrossRef] [PubMed]
  21. C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82, 184304 (2010). [CrossRef]
  22. R. N. Raman, M. J. Matthews, J. J. Adams, and S. G. Demos, “Monitoring annealing via CO2 laser heating of defect populations on fused silica surfaces using photoluminescence microscopy,” Opt. Express 18, 15207–15215 (2010). [CrossRef] [PubMed]
  23. R. A. Negres, M. A. Norton, D. A. Cross, and C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express 18, 19966–19976 (2010). [CrossRef] [PubMed]
  24. M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001). [CrossRef]
  25. G. Raze, J. M. Morchain, M. Loiseau, L. Lamaignere, M. Josse, and H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE 4932, 127–135 (2003). [CrossRef]
  26. M. A. Norton, E. E. Donohue, W. G. Hollingsworth, J. N. McElroy, and R. P. Hackel, “Growth of laser initiated damage in fused silica at 527 nm,” Proc. SPIE 5273, 236–243 (2004). [CrossRef]
  27. M. A. Norton, E. E. Donohue, W. G. Hollingsworth, M. D. Feit, A. M. Rubenchik, and R. P. Hackel, “Growth of laser initiated damage in fused silica at 1053 nm,” Proc. SPIE 5647, 197–205 (2005). [CrossRef]
  28. M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in SiO2 under multiple wavelength irradiation,” Proc. SPIE 5991, 599108 (2005). [CrossRef]
  29. L. Lamaignere, S. Reyne, M. Loiseau, J. C. Poncetta, and H. Bercegol, “Effects of wavelengths combination on initiation and growth of laser-induced surface damage in SiO2,” Proc. SPIE 6720, 67200F (2007). [CrossRef]
  30. M. A. Norton, A. V. Carr, C. W. Carr, E. E. Donohue, M. D. Feit, W. G. Hollingsworth, Z. Liao, R. A. Negres, A. M. Rubenchik, and P. Wegner, “Laser damage growth in fused silica with simultaneous 351 nm and 1053 nm irradiation,” Proc. SPIE 7132, 71321H (2008). [CrossRef]
  31. M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2006). [CrossRef]
  32. W. Q. Huang, W. Han, F. Wang, Y. Xiang, F. Q. Li, B. Feng, F. Jing, X. F. Wei, W. G. Zheng, and X. M. Zhang, “Laser induced damage growth on large aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26, 017901 (2009). [CrossRef]
  33. M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007). [CrossRef]
  34. H. Bercegol, L. Lamaignere, B. L. Garrec, M. Loiseau, and P. Volto, “Self-focusing and rear surface damage in a fused silica window at 1064 nm and 355 nm,” Proc. SPIE 4932, 276–285 (2003). [CrossRef]
  35. A. Salleo, R. Chinsio, and F. Y. Genin, “Crack propagation in fused silica during UV and IR ns-laser illumination,” Proc. SPIE 3578, 456–471 (1999). [CrossRef]
  36. R. Courchinoux, G. Raze, C. Sudre, M. A. Josse, A. C. L. Boscheron, C. Lepage, E. Mazataud, E. Bordenave, L. Lamaignere, M. Loiseau, T. Donval, and H. Bercegol, “Laser-induced damage growth with small and large beams: comparison between laboratory experiments and large-scale laser data,” Proc. SPIE 5273, 99–106 (2004). [CrossRef]
  37. M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. Wegner, “A large aperture, high energy laser system for optics and optical components testing,” Proc. SPIE 5273, 325–333 (2004). [CrossRef]
  38. R. A. Negres, M. A. Norton, Z. M. Liao, D. A. Cross, J. D. Bude, and C. W. Carr, “The effect of pulse duration on the growth rate of laser-induced damage sites at 351 nm on fused silica surfaces,” Proc. SPIE 7504, 750412 (2009). [CrossRef]
  39. R. R. Prasad, J. R. Bruere, J. M. Halpin, P. Lucero, S. Mills, M. Bernacil, and R. P. Hackel, “Design of a production process to enhance optical performance of 3ω optics,” Proc. SPIE 5273, 296–302 (2004). [CrossRef]
  40. R. R. Prasad, J. R. Bruere, J. Peterson, J. M. Halpin, M. Borden, and R. P. Hackel, “Enhanced performance of large 3ω optics using UV and IR lasers,” Proc. SPIE 5273, 288–295(2004). [CrossRef]
  41. B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J. L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express 17, 11469–11479 (2009). [CrossRef] [PubMed]
  42. W. Weibull, Fatigue Testing and Analysis of Results(Pergamon, 1961).
  43. J. D. Kalbfkisch and R. L. Prentice, The Statistical Analysis of Failure Time Data (Wiley-Interscience, 1980).
  44. E. L. Kaplan and P. Meier, “Non-parametric estimation from incomplete observations,” J. Am. Stat. Assoc. 53, 457–481(1958). [CrossRef]
  45. I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2nd ed. (Morgan Kaufmann, 2005).
  46. P. Berkhin, “Survey of clustering data mining techniques,” Tech. Rep. (Accrue Software, San Jose, California, 2002).
  47. J. Heebner, P. Wegner, and C. Haynam, “Programmable beam spatial shaping for the National Ignition Facility,” SPIE Newsroom (21 July 2010), doi:10.1117/2.1201007.003139, http://spie.org/x41261.xml?ArticleID=x41261. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited