Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Penetration depth of linear polarization imaging for two-layer anisotropic samples

Not Accessible

Your library or personal account may give you access

Abstract

Polarization techniques can suppress multiply scattering light and have been demonstrated as an effective tool to improve image quality of superficial tissues where many cancers start to develop. Learning the penetration depth behavior of different polarization imaging techniques is important for their clinical applications in diagnosis of skin abnormalities. In the present paper, we construct a two-layer sample consisting of isotropic and anisotropic media and examine quantitatively using both experiments and Monte Carlo simulations the penetration depths of three different polarization imaging methods, i.e., linear differential polarization imaging (LDPI), degree of linear polarization imaging (DOLPI), and rotating linear polarization imaging (RLPI). The results show that the contrast curves of the three techniques are distinctively different, but their characteristic depths are all of the order of the transport mean free path length of the top layer. Penetration depths of LDPI and DOLPI depend on the incident polarization angle. The characteristic depth of DOLPI, and approximately of LDPI at small g, scales with the transport mean free path length. The characteristic depth of RLPI is almost twice as big as that of DOLPI and LDPI, and increases significantly as g increases.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Monte Carlo model of the penetration depth for polarization gating spectroscopy: influence of illumination-collection geometry and sample optical properties

Andrew J. Gomes, Vladimir Turzhitsky, Sarah Ruderman, and Vadim Backman
Appl. Opt. 51(20) 4627-4637 (2012)

Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters

Minghao Sun, Honghui He, Nan Zeng, E. Du, Yihong Guo, Cheng Peng, Yonghong He, and Hui Ma
Appl. Opt. 53(14) 2949-2955 (2014)

Investigation of depth selectivity of polarization gating for tissue characterization

Yang Liu, Young L. Kim, Xu Li, and Vadim Backman
Opt. Express 13(2) 601-611 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved