OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 24 — Aug. 20, 2011
  • pp: 4720–4727

Laser damage properties of TiO 2 / Al 2 O 3 thin films grown by atomic layer deposition

Yaowei Wei, Hao Liu, Ouyang Sheng, Zhichao Liu, Songlin Chen, and Liming Yang  »View Author Affiliations

Applied Optics, Vol. 50, Issue 24, pp. 4720-4727 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1142 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Research on thin film deposited by atomic layer deposition (ALD) for laser damage resistance is rare. In this paper, it has been used to deposit TiO 2 / Al 2 O 3 films at 110 ° C and 280 ° C on fused silica and BK7 substrates. Microstructure of the thin films was investigated by x-ray diffraction. The laser-induced damage threshold (LIDT) of samples was measured by a damage test system. Damage morphology was studied under a Nomarski differential interference contrast microscope and further checked under an atomic force microscope. Multilayers deposited at different temperatures were compared. The results show that the films deposited by ALD had better uniformity and transmission; in this paper, the uniformity is better than 99% over 100 mm Φ samples, and the transmission is more than 99.8% at 1064 nm . Deposition temperature affects the deposition rate and the thin film microstructure and further influences the LIDT of the thin films. As to the TiO 2 / Al 2 O 3 films, the LIDTs were 6.73 ± 0.47 J / cm 2 and 6.5 ± 0.46 J / cm 2 at 110 ° C on fused silica and BK7 substrates, respectively. The LIDTs at 110 ° C are notably better than 280 ° C .

© 2011 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(310.1210) Thin films : Antireflection coatings
(310.1860) Thin films : Deposition and fabrication

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 22, 2011
Revised Manuscript: March 28, 2011
Manuscript Accepted: March 28, 2011
Published: August 10, 2011

Yaowei Wei, Hao Liu, Ouyang Sheng, Zhichao Liu, Songlin Chen, and Liming Yang, "Laser damage properties of TiO2/Al2O3 thin films grown by atomic layer deposition," Appl. Opt. 50, 4720-4727 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. D. Feit, A. M. Rubenchik, M. R. Kozlowski, F. Y. Génin, S. Schwartz, and L. M. Sheeham, “Extrapolation of damage test data to predict performance of large-area NIF optics at 355 nm,” Proc. SPIE 3578, 226–234 (1999). [CrossRef]
  2. J. Hue, F. Y. Génin, S. M. Maricle, and M. R. Kozlowski, “Toward predicting the laser damage threshold of large-area optics,” Proc. SPIE 2966, 451–462 (1997). [CrossRef]
  3. P. Combis, F. Bonneau, G. Daval, and L. Lamaignère, “Laser-induced damage simulations of absorbing materials under pulsed IR irradiation,” Proc. SPIE 3902, 317–323 (2000). [CrossRef]
  4. S.-I. Zaitsu, S. Motokoshi, T. Jitsuno, and T. Yamanaka, “Laser-induced damage of optical coatings grown with surface chemical reaction,” Proc. SPIE 3492, 204–211 (1999). [CrossRef]
  5. M. Runkel, W. Williams, and J. DeYoreo, “Predicting bulk damage in NIF triple harmonic generators,” Proc. SPIE 3578, 322–335(1998).
  6. M. Ritala, M. Leskelä, J. P. Dekker, C. Mutsaers, P. J. Soininen, and J. Skarp, “Perfectly conformal TiN and Al2O3 films deposited by atomic layer deposition,” Chem. Vapor Depos. 5, 7–9 (1999). [CrossRef]
  7. L. Xiongying, H. Guangzhou, F. Yi, and Y. Jirong, “Development in atomic layer deposition and its applications,” Chin. J. Vac. Sci. Technol. 0926, 146–153 (2006).
  8. O. Sneh, R. Clark-Phelps, A. Londergan, J. Winkler, and T. Seidel, “Thin film atomic layer deposition equipment for semiconductor processing,” Thin Solid Films 402, 248–261 (2002). [CrossRef]
  9. P. F. Carcia, R. S. McLean, M. H. Reilly, M. D. Groner, S. M. George, “Ca test of Al2O3 gas diffusion barriers grown by atomic layer deposition on polymers,” Appl. Phys. Lett. 89, 031915 (2006). [CrossRef]
  10. M. Ritala and M. Leskelä, “Atomic layer epitaxy—a valuable tool for nanotechnology?” Nanotechnology 10, 19–24 (1999). [CrossRef]
  11. G. Triani, P. J. Evans, D. R. G. Mitchell, D. J. Attard, K. S. Finnie, M. James, T. Hanley, B. Latella, K. E. Prince, and J. Bartlett, “Atomic layer deposition of TiO2/Al2O3 films for optical applications,” Proc. SPIE 5870, 587009 (2005). [CrossRef]
  12. A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, and M. Knez, “Atomic layer deposition of Al2O3 and TiO2 multilayers for applications as bandpass filters and antireflection coatings,” Appl. Opt. 48, 1727–1732 (2009). [CrossRef]
  13. M. Ritala and M. Leskela, Handbook of Thin Film Materials, H.S.Nalwa, ed. (Academic, 2001), Vol.  1, pp. 103.
  14. R. Matero, A. Rahtu, M. Ritala, M. Leskelä, and T. Sajavaara, “Effect of water dose on the atomic layer deposition rate of oxide thin films,” Thin Solid Films 368, 1–7 (2000). [CrossRef]
  15. J. Aarik, A. Aidla, H. Mämdar, and T. Unstare, “Atomic layer deposition of titanium dioxide from TiCl4 and H2O: investigation of growth mechanism,” Appl. Surf. Sci. 172, 148–152(2001). [CrossRef]
  16. S.-I. Zaitsu, M. Shinji, and J. Takahisa, “Laser damage properties of optical coatings with nanoscale layers grown by atomic layer deposition,” Jpn. J. Appl. Phys. 43, 1034–1035 (2004). [CrossRef]
  17. J. Hu, M. Tang, W. Zhang, L. Duan, J. Hu, P. Ma, and Q. Xu, “Automatic measurement device of damage threshold of 355 nm laser and its experiment,” Opt. Optoelectron. Technol. 3, 22–25 (2005).
  18. S.-I. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka, and T. Yamanaka, “Large-area optical coatings with uniform thickness grown by surface chemical reactions for high-power laser applications,” Jpn. J. Appl. Phys. 41, 160–165 (2002). [CrossRef]
  19. S.-I. Zaitsu, T. Jitsuno, M. Nakatsuka, T. Yamanka, and S. Motokoshi, “Optical thin films consisting of nanoscale laminated layers,” Appl. Phys. Lett. 80, 2442–2444 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited