OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 24 — Aug. 20, 2011
  • pp: 4788–4797

Permanent magnets for Faraday rotators inspired by the design of the magic sphere

Gérard Trénec, William Volondat, Orphée Cugat, and Jacques Vigué  »View Author Affiliations


Applied Optics, Vol. 50, Issue 24, pp. 4788-4797 (2011)
http://dx.doi.org/10.1364/AO.50.004788


View Full Text Article

Enhanced HTML    Acrobat PDF (439 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Faraday polarization rotators are commonly used in laser experiments. Most Faraday materials have a nonnegligible absorption, which is a limiting factor for high power laser optical isolators or for intracavity optical diodes. By using a stronger magnetic field and a shorter length of Faraday material, one can obtain the same polarization rotation and a reduced absorption. In this paper, we describe two permanent magnet arrangements that are easy to build and produce magnetic fields up to 1.7 T , substantially more than commonly used. The field homogeneity is largely sufficient for a 30 dB isolation ratio. We finally discuss the prospects for producing even larger fields with permanent magnets.

© 2011 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(230.2240) Optical devices : Faraday effect

ToC Category:
Optical Devices

History
Original Manuscript: March 23, 2011
Revised Manuscript: June 22, 2011
Manuscript Accepted: June 23, 2011
Published: August 16, 2011

Citation
Gérard Trénec, William Volondat, Orphée Cugat, and Jacques Vigué, "Permanent magnets for Faraday rotators inspired by the design of the magic sphere," Appl. Opt. 50, 4788-4797 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-24-4788


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Lord Rayleigh, “On the constant of magnetic rotation of light in bisulphide of carbon,” Phil. Trans. R. Soc. London 176, 343–366 (1885). [CrossRef]
  2. Lord Rayleigh, “On the magnetic rotation of light and the second law of thermo-dynamics,” Nature 64, 577–578 (1901). [CrossRef]
  3. F. J. Sansalone, “Compact optical isolator,” Appl. Opt. 10, 2329–2331 (1971). [CrossRef] [PubMed]
  4. K. P. Birch, “A compact optical isolator,” Opt. Commun. 43, 79–84 (1982). [CrossRef]
  5. D. J. Gauthier, P. Narum, and R. W. Boyd, “Simple, compact, high-performance permanent magnet Faraday isolator,” Opt. Lett. 11, 623–625 (1986). [CrossRef] [PubMed]
  6. P. A. Schulz, “Wavelength independent Faraday isolator,” Appl. Opt. 28, 4458–4464 (1989). [CrossRef] [PubMed]
  7. R. Wynands, F. Diedrich, D. Meschede, and H. R. Telle, “A compact tunable 60 dB Faraday optical isolator,” Rev. Sci. Instrum. 63, 5586–5590 (1992). [CrossRef]
  8. H. W. Schröder, L. Stein, D. Frölich, B. Fugger, and H. Welling, “A high-power single-mode cw dye ring laser,” Appl. Phys. 14, 377–380 (1977). [CrossRef]
  9. T. F. Johnston and W. Proffitt, “Design and performance of a broad-band optical diode to enforce one-direction traveling-wave operation of a ring laser,” IEEE J. Quantum Electron. QE-16, 483–488 (1980). [CrossRef]
  10. F. Biraben, “Efficacité des systèmes unidirectionnels utilisables dans les lasers en anneau,” Opt. Commun. 29, 353–356(1979). [CrossRef]
  11. C. C. Robinson, “The Faraday rotation of diamagnetic glasses from 0.334 μm to 1.9 μm,” Appl. Opt. 3, 1163–1166 (1964). [CrossRef]
  12. J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida, and R. R. Reitze, Appl. Opt. 40, 366–374 (2001). [CrossRef]
  13. E. Khazanov, “Compensation of thermally induced polarisation distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999). [CrossRef]
  14. E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, and D. H. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17, 99–102 (2000). [CrossRef]
  15. N. F. Andreev, O. V. Palashov, A. K. Potemkin, D. H. Reitze, A. M. Sergeev, and E. A. Khazanov, “A 45 dB Faraday isolator for 100 W average radiation power,” Quantum Electron. 30, 1107–1108 (2000). [CrossRef]
  16. E. A. Khazanov, “A new Faraday rotator for high average power lasers,” Quantum Electron. 31, 351–356 (2001). [CrossRef]
  17. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002). [CrossRef] [PubMed]
  18. E. Khazanov, A. Anastasiyev, N. Andreev, A. Voytovich, and O. Palashov, “Compensation of birefringence in active elements with a novel Faraday mirror operating at high average power,” Appl. Opt. 41, 2947–2954 (2002). [CrossRef] [PubMed]
  19. A. V. Voitovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolator for kilowatt average radiation powers,” Quantum Electron. 37, 471–474 (2007). [CrossRef]
  20. D. J. Dentz, R. C. Puttbach, and R. F. Belt, “Terbium gallium garnet for Faraday effect devices,” AIP Conf. Proc. 18, 954–958 (1974).
  21. A. Balbin Villaverde, D. A. Donatti, and D. G. Bozinis, “Terbium gallium garnet Verdet constant measurements with pulsed magnetic field,” J. Phys. C 11, L495–L498 (1978). [CrossRef]
  22. Terbium gallium garnet on Northrop Grumman website, http://www.st.northropgrumman.com.
  23. W. Zhang, F. Guo, and J. Chen, “Growth and characterization of Tb3Ga5−xAlxO12,” J. Cryst. Growth 306, 195–199 (2007). [CrossRef]
  24. J. Liu, F. Guo, B. Zhao, N. Zhuang, Y. Chen, Z. Gao, and J. Chen, “Growth and magneto-optical properties of NaTb(WO4)2,” J. Cryst. Growth 310, 2613–2616 (2008). [CrossRef]
  25. F. Guo, J. Ru, H. Li, N. Zhuang, J. Liu, B. Zhao, and J. Chen, “Growth and magneto-optical properties of NaTb(MoO4)2 crystals,” J. Cryst. Growth 310, 4390–4393 (2008). [CrossRef]
  26. N. P. Barnes and L. B. Petway, “Variation of the Verdet constant with temperature of terbium gallium garnet,” J. Opt. Soc. Am. B 9, 1912–1915 (1992). [CrossRef]
  27. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15, 11255–11261 (2007). [CrossRef] [PubMed]
  28. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Development of cryogenic TGG ceramic based Faraday rotator for inertial fusion driver,” J. Phys. Conf. Ser. 112, 032059 (2008). [CrossRef]
  29. D. S. Zheleznov, I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and A. V. Voitovich, “Faraday rotators with short magneto-optical elements for 50 kW laser power,” IEEE J. Quantum Electron. 43, 451–457 (2007). [CrossRef]
  30. H. Becquerel, “Sur une interprétation applicable au phénomène de Faraday et au phénomène de Zeeman,” C. R. Acad. Sci. 125, 679–685 (1897).
  31. L. Hilico, A. Douillet, J.-P. Karr, and E. Tournié, “Faraday optical isolator in the 9.2 μm range for QCL applications” (personal communication, 2011).
  32. D. K. Wilson and A. Heiney, “Magnetic configuration for Faraday rotators,” U.S. patent 4,856,878 (15 August 1987).
  33. J. Vigué, G. Trénec, O. Cugat, and W. Volondat, “Magnetic field generator having permanent magnets,” Patent WO/2008/031935 A1 (30 March 2008).
  34. I. Mukhin, A. Voitovich, O. Palashov, and E. Khazanov, “2.1 Tesla permanent-magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun. 282, 1969–1972 (2009). [CrossRef]
  35. H. Zijlstra, “Permanent magnet systems for NMR tomography,” Philips J. Res. 40, 259–288 (1985).
  36. K. Halbach, “Design of permanent multipole magnets with oriented rare earth cobalt material,” Nucl. Instrum. Methods 169, 1–10 (1980). [CrossRef]
  37. K. Halbach, “Physical and optical properties of rare earth cobalt magnets,” Nucl. Instrum. Methods 187, 109–117 (1981). [CrossRef]
  38. H. A. Leupold, A. Tilak, and E. Potenziani II, “Permanent magnet spheres: design, construction and application,” J. Appl. Phys. 87, 4730–4734 (2000). [CrossRef]
  39. H. A. Leupold and E. Potenziani II, “Novel high-field permanent-magnet flux sources,” IEEE Trans. Magn. MAG-23, 3628–3629 (1987). [CrossRef]
  40. F. Bloch, O. Cugat, G. Meunier, and J. C. Toussaint, “Innovating approaches to the generation of intense magnetic fields: design and optimization of a 4 Tesla permanent magnet flux source,” IEEE Trans. Magn. 34, 2465–2468 (1998). [CrossRef]
  41. F. Bloch, O. Cugat, J.-C. Toussaint, and G. Meunier, “Approches novatrices à la génération de champs magnétiques intenses: optimisation d’une source de flux à aimants permanents,” Eur. Phys. J. Appl. Phys. 5, 85–89 (1999). [CrossRef]
  42. F. Bloch, “Source de champ intense 4 Tesla aimants permanents,” Ph.D. dissertation (Université de Grenoble, 1999).
  43. H. A. Leupold and A. Tilak, “Field augmented permanent magnet structures,” U.S. patent 5,428,334 (27 June 1995).
  44. ChenYang Technologies GmbH & Co, http://www.chenyang-ism.com/.
  45. U. Eismann, F. Gerbier, C. Canalias, G. Trénec, J. Vigué, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold atom experiments with lithium,” Appl. Phys. B (to be published).
  46. A. Brillet and F. Cleva, ARTEMIS Observatoire Cote d’Azur, CNRS, Université de Nice Sophia Antipolis 06304 Nice (private communication, 2004).
  47. Flux2D/3D, finite elements software package available from CEDRAT Company, www.cedrat.com.
  48. J. Poirson, J.-C. Cotteverte, A. Le Floch, and F. Bretenaker, “Internal reflections of Gaussian beams in Faraday isolators,” Appl. Opt. 36, 4123–4130 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited