OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 25 — Sep. 1, 2011
  • pp: 4967–4976

Exploiting chromatic aberration for image-based microscope autofocus

Derek N. Fuller, Albert L. Kellner, and Jeffrey H. Price  »View Author Affiliations


Applied Optics, Vol. 50, Issue 25, pp. 4967-4976 (2011)
http://dx.doi.org/10.1364/AO.50.004967


View Full Text Article

Enhanced HTML    Acrobat PDF (674 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Autofocus is a critical aspect of any automated microscopy application. Here we report on the successful exploitation of chromatic aberration to speed autofocus for biological microscopy. Using pairs of lenses aligned nominally as infinite conjugates, the chromatic aberration produced by a microscope can be manipulated to achieve multiplanar imaging covering a wide range of spacings. Using both three-chip CCD and Bayer-array color cameras, chromatic aberration-based multiplanar imaging is used to reduce by a factor of 3 the number of mechanical movements of the biological sample necessary to determine best focus. Chromatic aberration-based autofocus is validated using a 20 × 0.75 NA objective while scanning over 6000 fields of National Institutes of Health 3T3 cells cultured on a coverglass. The combined precisions (standard deviations) of 23.7 nm for a three-chip CCD camera and 23.3 nm for a Bayer- array camera are obtained. These precisions are approximately 1 / 20 th of the depth of field of the objective.

© 2011 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Imaging Systems

History
Original Manuscript: March 1, 2011
Revised Manuscript: July 18, 2011
Manuscript Accepted: July 19, 2011
Published: August 26, 2011

Virtual Issues
Vol. 6, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Derek N. Fuller, Albert L. Kellner, and Jeffrey H. Price, "Exploiting chromatic aberration for image-based microscope autofocus," Appl. Opt. 50, 4967-4976 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-25-4967


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Liron, Y. Paran, N. G. Zatorsky, B. Geiger, and Z. Kam, “Laser autofocusing system for high-resolution cell biological imaging,” J. Microsc. 221, 145–151 (2006). [CrossRef] [PubMed]
  2. J. Peters, “Nikon Instruments TiE-PFS dynamic focusing system,” Nature Methods—Application Notes, http://www.nature.com/app_notes/nmeth/2008/082312/full/an6676.html (2008).
  3. P.-C. Cheng, “The contrast formation in optical microscopy,” in Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006), pp. 162–206. [CrossRef]
  4. F. C. A. Groen, I. T. Young, and G. Ligthart, “A comparison of different focus functions for use in autofocus algorithms,” Cytometry 6, 81–91 (1985). [CrossRef] [PubMed]
  5. M. Bravo-Zanoguera, B. von Massenbach, A. L. Kellner, and J. H. Price, “High-performance autofocus circuit for biological microscopy,” Rev. Sci. Instrum. 69, 3966–3977 (1998). [CrossRef]
  6. J. H. Price and D. A. Gough, “Comparison of phase-contrast and fluorescence digital autofocus for scanning microscopy,” Cytometry 16, 283–297 (1994). [CrossRef] [PubMed]
  7. M. A. Oliva, M. Bravo-Zanoguera, and J. H. Price, “Filtering out contrast reversals for microscopy autofocus,” Appl. Opt. 38, 638–646 (1999). [CrossRef]
  8. M. E. Bravo-Zanoguera, C. A. Laris, L. K. Nguyen, M. Oliva, and J. H. Price, “Dynamic autofocus for continuous-scanning time-delay-and-integration image acquisition in automated microscopy,” J. Biomed. Opt. 12, 034011 (2007). [CrossRef] [PubMed]
  9. L. K. Nguyen, M. E. Bravo-Zanoguera, A. L. Kellner, and J. H. Price, “Magnification corrected optical image splitting module for simultaneous multiplanar acquisition,” Proc. SPIE 3921, 31–40 (2000). [CrossRef]
  10. L. K. Nguyen, “High-throughput image cytometer for detection of circulating tumor cells and contrast-enhancement filtering for automated 3D image segmentation of cartilage tissue explants,” Ph.D. thesis (University of California–San Diego, 2007).
  11. D. P. Hand, M. D. T. Fox, F. M. Haran, C. Peters, S. A. Morgan, M. A. McLean, W. M. Steen, and J. D. C. Jones, “Optical focus control system for laser welding and direct casting,” Opt. Lasers Eng. 34, 415–427 (2000). [CrossRef]
  12. Y. Li and S. Chemerisov, “Manipulation of spatiotemporal photon distribution via chromatic aberration,” Opt. Lett. 33, 1996–1998 (2008). [CrossRef] [PubMed]
  13. M. K. Johnson, “Lighting and optical tools for image forensics,” Ph.D. thesis (Dartmouth College, 2007).
  14. G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229–233 (1984). [CrossRef]
  15. M. A. Browne, O. Akinyemi, and A. Boyde, “Confocal surface profiling utilizing chromatic aberration,” Scanning 14, 145–153 (1992). [CrossRef]
  16. S. Cha, P. C. Lin, L. Zhu, P.-C. Sun, and Y. Fainman, “Nontranslational three-dimensional profilometry by chromatic confocal microscopy with dynamically configurable micromirror scanning,” Appl. Opt. 39, 2605–2613 (2000). [CrossRef]
  17. S. L. Dobson, P.-C. S. Sun, and Y. Fainman, “Diffractive lenses for chromatic confocal imaging,” Appl. Opt. 36, 4744–4748(1997). [CrossRef] [PubMed]
  18. P. C. Lin, P.-C. Sun, L. Zhu, and Y. Fainman, “Single-shot depth-section imaging through chromatic slit-scan confocal microscopy,” Appl. Opt. 37, 6764–6770 (1998). [CrossRef]
  19. M. Maly and A. Boyde, “Real-time stereoscopic confocal reflection microscopy using objective lenses with linear longitudinal chromatic dispersion,” Scanning 16, 187–192 (1994).
  20. K. Shi, P. Li, S. Yin, and Z. Liu, “Chromatic confocal microscopy using supercontinuum light,” Opt. Express 12, 2096–2101 (2004). [CrossRef] [PubMed]
  21. H. J. Tiziani and H.-M. Uhde, “Three-dimensional image sensing by chromatic confocal microscopy,” Appl. Opt. 33, 1838–1843 (1994). [CrossRef] [PubMed]
  22. M. Weinigel, A. L. Kellner, and J. H. Price, “Exploration of chromatic aberration for multiplanar imaging: proof of concept with implications for fast, efficient autofocus,” Cytometry A 75A, 999–1006 (2009). [CrossRef]
  23. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980), 6th ed.
  24. H. Bach and N. Neuroth, The Properties of Optical Glass (Springer-Verlag, 1998).
  25. P. M. McDonough, R. M. Agustin, R. S. Ingermanson, P. A. Loy, B. M. Buehrer, J. B. Nicoll, N. L. Prigozhina, I. Mikic, and J. H. Price, “Quantification of lipid droplets and associated proteins in cellular models of obesity via high-content/high-throughput microscopy and automated image analysis,” Assay Drug Devel. Tech. 7, 440–460 (2009), PMID: 19895345. [CrossRef]
  26. M. M. Morelock, E. A. Hunter, T. J. Moran, S. Heynen, C. Laris, M. Thieleking, M. Akong, I. Mikic, S. Callaway, R. P. DeLeon, A. Goodacre, D. Zacharias, and J. H. Price, “Statistics of assay validation in high throughput cell imaging of nuclear factor κB nuclear translocation,” Assay Drug Devel. Tech. 3, 483–499(2005). [CrossRef]
  27. N. L. Prigozhina, L. Zhong, E. A. Hunter, I. Mikić, S. Callaway, D. R. Roop, M. A. Mancini, D. A. Zacharias, J. H. Price, and P. M. McDonough, “Plasma membrane assays and three-compartment image cytometry for high content screening,” Assay Drug Devel. Tech. 5, 29–48(2007). [CrossRef]
  28. Schott, “Optical glass: Data sheets,” http://www.us.schott.com/advanced_optics/english/download/schott_optical_glass_2009_us.pdf (2002).
  29. M. Françon, Progress in Microscopy, Vol.  9 of International Series of Monographs on Pure and Applied Biology(Pergamon, 1961).
  30. S. Inoué and K. R. Spring, Video Microscopy: The Fundamentals, 2nd ed. (Springer, 1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited