OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 25 — Sep. 1, 2011
  • pp: 4982–4988

Correlation analysis between plasmon field distribution and sensitivity enhancement in reflection- and transmission-type localized surface plasmon resonance biosensors

Nak-Hyeon Kim, Woo Kyung Jung, and Kyung Min Byun  »View Author Affiliations

Applied Optics, Vol. 50, Issue 25, pp. 4982-4988 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (641 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We examine the correlation between the plasmon field distribution and the sensitivity enhancement for both reflection- and transmission-type localized surface plasmon resonance (LSPR) biosensors with surface-relief gold nanogratings. In our calculation, the near-field characteristics are obtained from the finite-difference time-domain method and compared with the refractive index sensitivity as a unit target sample moves along the sensor surface. The numerical results show that the highest enhancement of sensitivity is found at the lower grating corners where an interplay between the target sample and the locally enhanced field can occur efficiently. This study suggests that, by localizing biomolecular interactions to the highly enhanced field, we can achieve a significantly improved LSPR detection with high sensitivity and a great linearity in a wide dynamic range.

© 2011 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(240.6680) Optics at surfaces : Surface plasmons
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Diffraction and Gratings

Original Manuscript: April 29, 2011
Revised Manuscript: June 30, 2011
Manuscript Accepted: July 5, 2011
Published: August 26, 2011

Virtual Issues
Vol. 6, Iss. 10 Virtual Journal for Biomedical Optics

Nak-Hyeon Kim, Woo Kyung Jung, and Kyung Min Byun, "Correlation analysis between plasmon field distribution and sensitivity enhancement in reflection- and transmission-type localized surface plasmon resonance biosensors," Appl. Opt. 50, 4982-4988 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999). [CrossRef]
  2. E. Kretschmann, “Decay of non radiative surface plasmons into light on rough silver films. comparison of experimental and theoretical results,” Opt. Commun. 6, 185–187 (1972). [CrossRef]
  3. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16, 1685–1706 (2004). [CrossRef]
  4. J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine 1, 219–228 (2006). [CrossRef]
  5. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008). [CrossRef] [PubMed]
  6. A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 6961–6968 (2004). [CrossRef]
  7. A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003). [CrossRef]
  8. A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379, 920–930 (2004). [CrossRef] [PubMed]
  9. K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009). [CrossRef] [PubMed]
  10. S. A. Kim, K. M. Byun, K. Kim, S. M. Jang, K. Ma, Y. Oh, D. Kim, S. G. Kim, M. L. Shuler, and S. J. Kim, “Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays,” Nanotechnology 21, 355503 (2010). [CrossRef] [PubMed]
  11. K. M. Byun, S. M. Jang, S. J. Kim, and D. Kim, “Effect of target localization on the sensitivity of a localized surface plasmon resonance biosensor based on subwavelength nanostructures,” J. Opt. Soc. Am. A 26, 1027–1034 (2009). [CrossRef]
  12. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986). [CrossRef]
  13. L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 10, 2581–2591 (1993). [CrossRef]
  14. L. Li and C. W. Haggans, “Convergence of the coupled-wave method for metallic lamellar diffraction gratings,” J. Opt. Soc. Am. A 10, 1184–1189 (1993). [CrossRef]
  15. Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nmperiod silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001). [CrossRef]
  16. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002). [CrossRef] [PubMed]
  17. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).
  18. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001). [CrossRef]
  19. S. M. Jang, D. Kim, S. H. Choi, K. M. Byun, and S. J. Kim, “Enhancement of localized surface plasmon resonance detection by incorporating metal–dielectric double-layered subwavelength gratings,” Appl. Opt. 50, 2846–2854(2011). [CrossRef] [PubMed]
  20. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007). [CrossRef] [PubMed]
  21. C.-H. Choi and C.-J. Kim, “Fabrication of a dense array of tall nanostructures over a large sample area with sidewall profile and tip sharpness control,” Nanotechnology 17, 5326–5333(2006). [CrossRef]
  22. J. M. Kontio, H. Husu, J. Simonen, M. J. Huttunen, J. Tommila, M. Pessa, and M. Kauranen, “Nanoimprint fabrication of gold nanocones with ∼10 nm tips for enhanced optical interactions,” Opt. Lett. 34, 1979–1981 (2009). [CrossRef] [PubMed]
  23. S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, “Nanopin plasmonic resonator array and its optical properties,” Nano Lett. 7, 1076–1080 (2007). [CrossRef] [PubMed]
  24. K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. 16, 1004–1014 (2010). [CrossRef]
  25. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?,” Opt. Express 17, 16505–16517 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (5322 KB)     
» Media 2: AVI (2667 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited