OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 25 — Sep. 1, 2011
  • pp: E112–E118

Wavelength modulation spectroscopy with a pulsed quantum cascade laser for the sensitive detection of acrylonitrile

Jagadeeshwari Manne, Alan Lim, Wolfgang Jäger, and John Tulip  »View Author Affiliations


Applied Optics, Vol. 50, Issue 25, pp. E112-E118 (2011)
http://dx.doi.org/10.1364/AO.50.00E112


View Full Text Article

Enhanced HTML    Acrobat PDF (830 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A pulsed, distributed feedback (DFB) quantum cascade laser centered at 957 cm 1 was used in combination with a wavelength modulation spectroscopic technique for the detection of acrylonitrile. The laser was excited with short current pulses ( 5 10 ns ), and the pulse amplitude was modulated with a linear subthreshold current ramp at 20 Hz resulting in a 2.5 cm 1 frequency scan. This allowed the measurement of spectroscopic features of acrylonitrile with absorption line widths of 1 cm 1 . A demodulation approach followed by numerical filtering was utilized to improve the signal-to-noise ratio. We then superimposed a 10 kHz sine wave current modulation on top of the 20 Hz current ramp. The resulting high frequency temperature modulation of the DFB structure results in wavelength modulation. A minimum detectable absorbance of 10 5 , corresponding to the sub 10 9 levels of acrylonitrile, was achieved with less than a minute averaging time.

© 2011 Optical Society of America

OCIS Codes
(280.3420) Remote sensing and sensors : Laser sensors
(300.1030) Spectroscopy : Absorption
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6380) Spectroscopy : Spectroscopy, modulation
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

History
Original Manuscript: June 2, 2011
Manuscript Accepted: July 8, 2011
Published: August 8, 2011

Citation
Jagadeeshwari Manne, Alan Lim, Wolfgang Jäger, and John Tulip, "Wavelength modulation spectroscopy with a pulsed quantum cascade laser for the sensitive detection of acrylonitrile," Appl. Opt. 50, E112-E118 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-25-E112


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556(1994). [CrossRef]
  2. C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, “Continuous-wave and high power pulsed operation of index coupled distributed feedback quantum cascade laser at ∼8.5 μm,” Appl. Phys. Lett. 72, 1430–1432 (1998). [CrossRef]
  3. J. McManus, D. Nelson, J. Shorter, M. Zahniser, A. Mueller, Y. Bonetti, M. Beck, D. Hofstetter, and J. Faist, “Quantum cascade lasers for open and closed path measurements of atmospheric trace gases,” Proc. SPIE 4817, 22–33 (2002). [CrossRef]
  4. D. Weidmann, A. Kosterev, C. Roller, R. Curl, M. Fraser, and F. Tittel, “Monitoring of ethylene by a pulsed quantum cascade laser,” Appl. Opt. 43, 3329–3334 (2004). [CrossRef]
  5. D. Nelson, B. McManus, S. Urbanski, S. Herndon, and M. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta, Part A: Mol. Spectrosc. 60, 3325–3335 (2004). [CrossRef]
  6. S. Schilt, L. Thevenaz, E. Courtois, and P. Robert, “Ethylene spectroscopy using a quasi-room-temperature quantum cascade laser,” Spectrochim. Acta, Part A: Mol. Spectrosc. 58, 2533–2539 (2002). [CrossRef]
  7. A. A. Kosterev, R. F. Curl, F. K. Tittel, R. Kohler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Transportable automated ammonia sensor based on a pulsed thermoelectrically cooled quantum-cascade distributed feedback laser,” Appl. Opt. 41, 573–578 (2002). [CrossRef]
  8. R. E. Baren, M. E. Parris, K. H. Shafer, C. N. Harward, Q. Shi, D. D. Nelson, J. B. McManus, and M. S. Zahniser, “Quad quantum cascade laser spectrometer with dual gas cells for the simultaneous analysis of mainstream and sidestream cigarette smoke,” Spectrochim. Acta, Part A: Mol. Spectrosc. 60, 3437–3447 (2004). [CrossRef]
  9. O. Sukhorukov, A. Lytkine, J. Manne, J. Tulip, and W. Jager, “Cavity ring-down spectroscopy with a pulsed distributed feedback quantum cascade laser,” Proc. SPIE 6127, 61270A(2006). [CrossRef]
  10. J. Manne, O. Sukhorukov, W. Jager, and J. Tulip, “Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath,” Appl. Opt. 45, 9230–9237(2006). [CrossRef]
  11. M. L. Silva, D. M. Sonnerfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of nitric oxide levels in breath with a pulsed room-temperature quantum cascade laser,” Appl. Phys. B 81, 705–710 (2005). [CrossRef]
  12. E. Normand, M. McCulloch, G. Duxbury, and N. Langford, “Fast, real-time spectrometer based on a pulsed quantum-cascade laser,” Opt. Lett. 28, 16–18 (2003). [CrossRef]
  13. E. Normand, G. Duxbury, and L. Langford, “Characterization of the spectral behavior of pulsed quantum cascade lasers using a high resolution Fourier transform infrared spectrometer,” Opt. Commun. 197, 115–120 (2001). [CrossRef]
  14. J. B. McManus, D. D. Nelson, J. Shorter, M. Zahniser, A. Mueller, Y. Bonetti, M. Beck, D. Hofstetter, and J. Faist, “Quantum cascade lasers for openand closed path measurement of atmospheric trace gases,” Proc. SPIE 4817, 22–33(2002). [CrossRef]
  15. P. Corrigan, M. Lwin, R. Huntley, A. Chhabra, F. Moshary, B. Gross, and S. Ahmed, “Portable open-path chemical sensor using a quantum cascade laser,” Proc. SPIE 7312, 73120P(2009). [CrossRef]
  16. A. P. M. Michel, P. Q. Liu, J. K. Yeung, P. Corrigan, M. L. Baeck, Z. Wang, T. Day, F. Moshary, C. F. Gmachl, and J. A. Smith, “Quantum cascade laser open-path system for remote sensing of trace gases in Beijing,” China Opt. Eng. 49, 111125(2010). [CrossRef]
  17. M. Taslakov, V. Simeonov, and H. van den Bergh, “Open-path atmospheric spectroscopy using room temperature operated pulsed quantum cascade laser,” Spectrochim. Acta, Part A: Mol. Spectrosc. 63, 1002–1008 (2006). [CrossRef]
  18. M. Taslakov, V. Simeonov, and H. van den Bergh, “Open-path spatially resolved detection of atmospheric compounds using pulsed quantum cascade laser spectroscopy,” Proc. SPIE 6604, 660424 (2007). [CrossRef]
  19. M. Taslakov, V. Simeonov, and H. van den Bergh, “Open-path trace gas measurements using a pulsed quantum cascade laser,” Proc. SPIE 5830, 347–351 (2005). [CrossRef]
  20. G. Gagliardi, S. Borri, F. Tamassia, F. Capasso, C. Gmachl, D. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “A frequency-modulated quantum cascade laser for spectroscopy of CH4 and N2O isotopomers,” Isotopes Environmen. Health Stud. 41, 313–321 (2005). [CrossRef]
  21. D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared race-gas sensing with a quasi-continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79, 907–913(2004). [CrossRef]
  22. D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992). [CrossRef]
  23. J. A. Silver, “Frequency modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992). [CrossRef]
  24. D. J. Miller and M. A. Zondlo, “Open-path high sensitivity atmospheric ammonia sensing with a 9 μm quantum cascade laser,” in Conference on Lasers and Electro-Optics, Tech. Dig. (CD) (Optical Society of America, 2010), paper JThJ4.
  25. G. Hancock, J. N. van Helden, R. Peverall, G. A. D. Ritchie, and R. J. Walker, “Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser,” Appl. Phys. Lett. 94, 201110 (2009). [CrossRef]
  26. S. Schilt, L. Thevenaz, and P. Robert, “Wavelength modulation spectroscopy: combined frequency and intensity laser modulation,” Appl. Opt. 42, 6728–6738 (2003). [CrossRef]
  27. J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers-Comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981). [CrossRef]
  28. J. M. Supplee, E. A. Whittaker, and W. Lenth, “Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1994). [CrossRef]
  29. K. Namjou, S. Cai, and E. A. Whittaker, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998). [CrossRef]
  30. A. Lytkine, B. Lau, A. Lim, W. Jäger, and J. Tulip, “Range-resolved gas concentration measurements using tunable semiconductor lasers,” Appl. Phys. B 90, 339–343 (2008). [CrossRef]
  31. U.S. Environmental protection Agency (EPA), http://www.epa.gov/ttn/atw/.
  32. J. Manne, A. Lim, W. Jäger, and J. Tulip, “Detection of acrolein and acrylonitrile with a pulsed, room temperature quantum cascade laser,” Proc. SPIE 7750, 77500V(2010). [CrossRef]
  33. S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, and P. A. Johnson, “Gas-phase databases for quantitative infrared spectroscopy,” Appl. Spectrosc. 58, 1452–1461(2004). [CrossRef]
  34. F. Cerceau, F. Raulin, R. Courtin, and D. Gautier, “Infrared spectra of gaseous mononitriles: application to the atmosphere of Titan,” Icarus 62, 207–220 (1985). [CrossRef]
  35. L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. V. Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transf. 82, 5–44 (2003). [CrossRef]
  36. D. A. Skoog, F. J. Holler, and T. A. Nieman, Principles of Instrumental Analysis (Saunders, 1998), pp. 11–19.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited