OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 25 — Sep. 1, 2011
  • pp: E119–E124

Design and analysis of dual-shape-core large-mode-area optical fiber

Ajeet Kumar and Vipul Rastogi  »View Author Affiliations


Applied Optics, Vol. 50, Issue 25, pp. E119-E124 (2011)
http://dx.doi.org/10.1364/AO.50.00E119


View Full Text Article

Enhanced HTML    Acrobat PDF (719 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a large effective area fiber design using dual-shape core (DSC) fiber. The fiber is essentially a depressed-index clad fiber with a dual-shape-core consisting of a large central core and a small slightly lower-index side core. The refractive indices of the two cores are so chosen as to perfectly guide the fundamental mode. All the higher-order modes of the fiber are leaky. The fiber shows large-mode-area single-mode operation by higher-order modes discrimination. We have analyzed the structure by using the transfer matrix method. Our numerical simulation results suggest that the DSC fiber can have single-mode operation with effective mode area as large as 580 μm 2 and low bending loss. The bending loss of the fiber could be brought down by more than 2 orders of magnitude compared to the corresponding step-index fiber. We also show that the mode field area is relatively insensitive to design param eters in comparison to the leakage loss of the mode. The fiber is amenable to fabrication by modified chemical vapor deposition technology and is expected to find applications in high power fiber lasers and amplifiers.

© 2011 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(060.3510) Fiber optics and optical communications : Lasers, fiber

History
Original Manuscript: February 28, 2011
Revised Manuscript: June 29, 2011
Manuscript Accepted: July 22, 2011
Published: August 8, 2011

Citation
Ajeet Kumar and Vipul Rastogi, "Design and analysis of dual-shape-core large-mode-area optical fiber," Appl. Opt. 50, E119-E124 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-25-E119


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. G. R. Broderick, H. L. Offerhause, D. J. Richardson, R. A. Sammut, J. Caplen, and L. Dong, “Large mode area fibers for high power applications,” Opt. Fiber Technol. 5, 185–196 (1999). [CrossRef]
  2. N. G. R. Broderick, D. J. Richardson, D. Taverner, J. E. Caplen, L. Dong, and M. Ibsen, “High power chirped-pulse all-fiber amplification system based on large-mode-area fiber gratings,” Opt. Lett. 24, 566–568 (1999). [CrossRef]
  3. G. P. Lees, D. Taverner, D. J. Richardson, L. Dong, and T. P. Newson, “Q-switched erbium doped fibre laser utilising a novel large mode area fibre,” Electron. Lett. 33, 393–394(1997). [CrossRef]
  4. S. Kawakami and S. Nishida, “Characteristics of a doubly clad optical fiber with a low-index inner cladding,” IEEE J. Quantum Electron. 10, 879–887 (1974). [CrossRef]
  5. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fibre laser with 1.36 kW of continuous-wave output power,” Opt. Express 126088–6092 (2004). [CrossRef] [PubMed]
  6. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. De Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998). [CrossRef]
  7. W. S. Wong, X. Peng, J. M. McLaughlin, and L. Dong, “Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers,” Opt. Lett. 30, 2855–2857 (2005). [CrossRef] [PubMed]
  8. L. Dong, X. Peng, and J. Li, “Leakage channel optical fibers with large effective area,” J. Opt. Soc. Am. B 24, 1689–1697(2007). [CrossRef]
  9. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25, 442–444 (2000). [CrossRef]
  10. F. D. Teodoro, J. P. Koplow, S. W. Moore, and D. A. V. Kliner, “Diffraction-limited, 300 kW peak-power pulses from a coiled multimode fiber amplifier,” Opt. Lett. 27, 518–520(2002). [CrossRef]
  11. S. Ramachandran, M. F. Yan, J. Jasapara, P. Wisk, S. Ghalmi, E. Monberg, and F. V. Dimarcello, “High-energy (nanojoule) femtosecond pulse delivery with record dispersion higher-order mode fiber,” Opt. Lett. 30, 3225–3227(2005). [CrossRef] [PubMed]
  12. S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Anomalous dispersion in a solid, silica-based fiber,” Opt. Lett. 31, 2532–2534(2006). [CrossRef] [PubMed]
  13. M. Schultz, O. Prochnow, A. Ruehl, D. Wandt, D. Kracht, S. Ramachandran, and S. Ghalmi, “Sub-60 fs ytterbium-doped fiber laser with a fiber-based dispersion compensation,” Opt. Lett. 32, 2372–2374 (2007). [CrossRef] [PubMed]
  14. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31, 1797–1799 (2006). [CrossRef] [PubMed]
  15. S. Suzuki, A. Schülzgen, and N. Peyghambarian, “Single-mode fiber laser based on core-cladding mode conversion,” Opt. Lett. 33, 351–353 (2008). [CrossRef] [PubMed]
  16. V. Rastogi and K. S. Chiang, “Propagation characteristics of a segmented cladding fiber,” Opt. Lett. 26, 491–493 (2001). [CrossRef]
  17. V. Rastogi and K. S. Chiang, “Analysis of segmented-cladding fiber by the radial-effective-index method,” J. Opt. Soc. Am. B 21, 258–265 (2004). [CrossRef]
  18. A. Yeung, K. S. Chiang, V. Rastogi, P. L. Chu, and G. D. Peng, “Experimental demonstration of single-mode operation of large-core segmented cladding fiber,” presented at the Optical Fiber Communication Conference, Los Angeles, California, 23–27 February, 2004.
  19. V. Rastogi and K. S. Chiang, “Leaky optical fiber for large mode area single mode operation,” Electron. Lett. 39, 1110–1112 (2003). [CrossRef]
  20. A. Kumar and V. Rastogi, “Design and analysis of a multilayer cladding large-mode area optical fiber,” J. Opt. A Pure Appl. Opt. 10, 015303 (2008). [CrossRef]
  21. A. Kumar, V. Rastogi, C. Kakkar, and B. Dussardier, “Co-axial dual-core resonant leaky fibre for optical amplifiers,” J. Opt. A Pure Appl. Opt. 10, 115306 (2008). [CrossRef]
  22. M. B-Astruc, F. Gooijer, N. Montaigne, and P. Sillard, “Trench-assisted profiles for large-effective-area single-mode fibers,” presented at the 34th European Conference on Optical Communication (ECOC), Brussels, Belgium, 21–25 September, 2008.
  23. P. K. Bachmann, “Method of manufacturing fluorine-doped optical fibers,” U.S. patent 4,468,413 (1984).
  24. K. Thyagarajan, S. Diggavi, A. Taneja, and A. K. Ghatak, “Simple numerical technique for the analysis of cylindrically symmetric refractive-index profile optical fibers,” Appl. Opt. 30, 3877–3879 (1991). [CrossRef] [PubMed]
  25. K. Morishita, “Numerical analysis of pulse broadening in graded index optical fibers,” IEEE Trans. Microwave Theory Tech. 29, 348–352 (1981). [CrossRef]
  26. E.-G. Neumann, Single-Mode Fibers: Fundamentals(Springer-Verlag, 1988) Chap. 5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited