OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 25 — Sep. 1, 2011
  • pp: E13–E19

On the coherent modes of ultranarrowband random lasers with nonresonant feedback

Ravitej Uppu and Sushil Mujumdar  »View Author Affiliations


Applied Optics, Vol. 50, Issue 25, pp. E13-E19 (2011)
http://dx.doi.org/10.1364/AO.50.000E13


View Full Text Article

Enhanced HTML    Acrobat PDF (896 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the variation of the coherent modes in the emission of a coherent random laser based on nonresonant feedback at critical excitation. A baseline-finding algorithm is applied to separate the coherent and incoherent components from the complete spectrum. By applying intensity thresholds to the isolated coherent spectrum, the modal density is measured as a function of mode intensity, which shows an exponential decay, corresponding to the probability of amplified extended modes. We measure the magnitude of the coherent intensity in the maximally coherent modes, whose distribution shows the presence of equal magnitude of coherent and incoherent fraction in any mode. Upon higher-than-critical excitation, instead of increasing the coherent fraction in the modes, the system tends to increase the number of modes that leads to self-averaging of the spectrum, thereby compromising the coherence.

© 2011 Optical Society of America

OCIS Codes
(030.6600) Coherence and statistical optics : Statistical optics
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media

History
Original Manuscript: March 17, 2011
Manuscript Accepted: April 21, 2011
Published: June 27, 2011

Citation
Ravitej Uppu and Sushil Mujumdar, "On the coherent modes of ultranarrowband random lasers with nonresonant feedback," Appl. Opt. 50, E13-E19 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-25-E13


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. S. Wiersma, “The physics and applications of random lasers,” Nature Phys. 4, 359–367 (2008). [CrossRef]
  2. V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 16, 835–840 (1968).
  3. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994). [CrossRef]
  4. C. M. Soukoulis, X. Jiang, J. Y. Xu, and H. Cao, “Dynamic response and relaxation oscillations in random lasers,” Phys. Rev. B 65, 041103 (2002). [CrossRef]
  5. H. Cao, X. Jiang, Y. Ling, J. Y. Xu, and C. M. Soukoulis, “Mode repulsion and mode coupling in random lasers,” Phys. Rev. B 67, 161101 (2003). [CrossRef]
  6. H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320, 643–646(2008). [CrossRef] [PubMed]
  7. K. L. van der Molen, A. P. Mosk, and A. Lagendijk, “Relaxation oscillations in long-pulsed random lasers,” Phys. Rev. A 80, 055803 (2009). [CrossRef]
  8. K. L. van der Molen, A. P. Mosk, and A. Lagendijk, “Intrinsic intensity fluctuations in random lasers,” Phys. Rev. A 74, 053808 (2006). [CrossRef]
  9. C. W. J. Beenakker, “Thermal radiation and amplified spontaneous emission from a random medium,” Phys. Rev. Lett. 81, 1829–1832 (1998). [CrossRef]
  10. O. Zaitsev, “Mode statistics in random lasers,” Phys. Rev. A 74, 063803 (2006). [CrossRef]
  11. S. Lepri, S. Cavalieri, G.-L. Oppo, and D. S. Wiersma, “Statistical regimes of random laser fluctuations,” Phys. Rev. A 75, 063820 (2007). [CrossRef]
  12. D. Sharma, H. Ramachandran, and N. Kumar, “Lévy statistical fluctuations from a random amplifying medium,” Fluc. Noise Lett. 6, L95–L101 (2006). [CrossRef]
  13. X. Wu and H. Cao, “Statistical studies of random-lasing modes and amplified spontaneous-emission spikes in weakly scattering systems,” Phys. Rev. A 77, 013832 (2008). [CrossRef]
  14. R. Uppu and S. Mujumdar, “Statistical fluctuations of coherent and incoherent intensity in random lasers with nonresonant feedback,” Opt. Lett. 35, 2831–2833 (2010). [CrossRef] [PubMed]
  15. S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. Zakhidov, and R. H. Baughmann, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59, R5284–R5287 (1999). [CrossRef]
  16. S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93, 263901 (2004). [CrossRef]
  17. M. Noginov, Solid State Random Lasers, Vol.  105 of Series in Optical Sciences (Springer, 2005).
  18. M. Bahoura, K. J. Morris, and M. A. Noginov, “Threshold and slope efficiency of Nd0.5La0.5Al3(BO3)4 ceramic random laser: effect of the pumped spot size,” Opt. Commun. 201, 405–411(2002). [CrossRef]
  19. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photon. 4, 231–235 (2010). [CrossRef]
  20. H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76, 2997(2000). [CrossRef]
  21. C.-R. Lee, J. De Lin, B.-Y. Huang, S.-H. Lin, T.-S. Mo, S.-Y. Huang, C.-T. Kuo, and H.-C. Yeh, “Electrically controllable liquid crystal random lasers below the Fredericksz transition threshold,” Opt. Express 19, 2391–2400 (2011). [CrossRef] [PubMed]
  22. C.-R. Lee, J. De Lin, B.-Y. Huang, T.-S. Mo, and S.-Y. Huang, “All-optically controllable random laser based on a dye-doped liquid crystal added with a photoisomerizable dye,” Opt. Express 18, 25896–25905 (2010). [CrossRef] [PubMed]
  23. D. S. Wiersma and S. A. Cavalieri, “A temperature-tunable random laser,” Nature 414, 708–709 (2001). [CrossRef] [PubMed]
  24. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999). [CrossRef]
  25. H. Cao, J. Y. Xu, D. Z. Zhang, S. H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000). [CrossRef] [PubMed]
  26. S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004). [CrossRef] [PubMed]
  27. H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86, 4524–4527 (2001). [CrossRef] [PubMed]
  28. H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. A 38, 10497–10535 (2005). [CrossRef]
  29. C. Vanneste and P. Sebbah, “Selective excitation of localized modes in active random media,” Phys. Rev. Lett. 87, 183903(2001). [CrossRef]
  30. C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98, 143902 (2007). [CrossRef] [PubMed]
  31. S. Mujumdar, V. Tuerck, R. Torre, and D. S. Wiersma, “Chaotic behavior of random lasers with static disorder,” Phys. Rev. A 76, 033807 (2007). [CrossRef]
  32. J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photon. 3, 279–282 (2009). [CrossRef]
  33. F. A. Pinheiro and L. C. Sampaio, “Lasing threshold of diffusive random lasers in three dimensions,” Phys. Rev. A 73, 013826 (2006). [CrossRef]
  34. R. Pierrat and R. Carminati, “Threshold of random lasers in the incoherent transport regime,” Phys. Rev. A 76, 023821(2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited