OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 25 — Sep. 1, 2011
  • pp: E131–E137

Polarization singularities in the two-mode optical fiber output

Y. V. Jayasurya, V. V. G. Krishna Inavalli, and Nirmal K. Viswanathan  »View Author Affiliations


Applied Optics, Vol. 50, Issue 25, pp. E131-E137 (2011)
http://dx.doi.org/10.1364/AO.50.00E131


View Full Text Article

Enhanced HTML    Acrobat PDF (564 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report here the controlled generation of polarization singularities (PS) in the output beam from a two-mode optical fiber, obtained via coherent superposition of the fundamental ( HE 11 ) mode with the vortex ( CV ± 1 ± / IV ± 1 ± ) modes by selectively coupling circularly polarized ( σ = ± 1 ) Gaussian ( TEM 00 ) input beam at two different launch angles. The PS in the output beam are characterized using the complex Stokes fields and interferometry measurements, based on the two-mode optical fiber which are an effective means to generate, manipulate, study, and use isolated PS, depending strongly on the input launch conditions.

© 2011 Optical Society of America

OCIS Codes
(260.5430) Physical optics : Polarization
(080.4865) Geometric optics : Optical vortices
(260.6042) Physical optics : Singular optics
(260.2710) Physical optics : Inhomogeneous optical media

History
Original Manuscript: March 14, 2011
Revised Manuscript: June 21, 2011
Manuscript Accepted: July 15, 2011
Published: August 8, 2011

Citation
Y. V. Jayasurya, V. V. G. Krishna Inavalli, and Nirmal K. Viswanathan, "Polarization singularities in the two-mode optical fiber output," Appl. Opt. 50, E131-E137 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-25-E131


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. V. Berry, “Singularities in wave and rays,” in Les Houches Session XXV-Physics of Defects, R.Balian, M.Kleman, and J.P.Poirier, eds. (North-Holland, 1981).
  2. J. F. Nye, Natural Focusing and the Fine Structure of Light (Institute of Physics, 1999).
  3. M. S. Soskin and M. V. Vasnetsov, “Singular optics,” in Progress in Optics, E.Wolf, ed. (Elsevier, 2001), Vol.  42, Chap. 4.
  4. I. Freund, M. S. Soskin, and A. I. Mokhun, “Elliptic critical points in paraxial optical fields,” Opt. Commun. 208, 223–253(2002). [CrossRef]
  5. M. R. Dennis, “Polarization singularities in paraxial vector fields: morphology and statistics,” Opt. Commun. 213, 201–221 (2002). [CrossRef]
  6. M. R. Dennis, K. O’Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” in Progress in Optics, E.Wolf, ed. (Elsevier, 2009), Vol.  53, pp. 293–363. [CrossRef]
  7. J. V. Hajnal, “Singularities in the transverse fields of electromagnetic waves. II. Observations on the eectric field,” Proc. R. Soc. A 414, 447–468 (1987). [CrossRef]
  8. J. V. Hajnal, “Compound modulated scatterer measuring system,” IEE Proc. H 134, 350–356 (1987). [CrossRef]
  9. J. V. Hajnal, “Observations of singularities in the electric and magnetic fields of freely propagating microwaves,” Proc. R. Soc. A 430, 413–421 (1990). [CrossRef]
  10. O. V. Angelsky, Optical Correlation: Techniques and Applications (SPIE, 2007). [CrossRef]
  11. N. I. Petrov, “Evolution of polarization in an inhomogeneous isotropic medium,” J. Exp. Theor. Phys. 85, 1085–1093 (1997). [CrossRef]
  12. A. Snyder and J. D. Love, Optical Waveguide Theory(Chapman & Hall, 1983).
  13. M. S. Soskin, V. Denisenko, and I. Freund, “Optical polarization singularities and elliptic stationary points,” Opt. Lett. 28, 1475–1477 (2003). [CrossRef] [PubMed]
  14. I. Freund, “Polarization singularities in three dimensional optical fields: the next frontier,” Ukr. J. Phys. 49, 370–376(2004).
  15. I. Mokhun and R. Khrobatin, “Shift of application point of angular momentum in the area of elementary polarization singularity,” J. Opt. A 10, 064015 (2008). [CrossRef]
  16. N. K. Viswanathan and V. V. G. Krishna Inavalli, “Generation of optical vector beams using a two-mode fiber,” Opt. Lett. 34, 1189–1191 (2009). [CrossRef] [PubMed]
  17. V. V. G. Krishna Inavalli and N. K. Viswanathan, “Switchable vector vortex beam generation using an optical fiber,” Opt. Commun. 283, 861–864 (2010). [CrossRef]
  18. V. V. G. Krishna Inavalli and N. K. Viswanathan, “Rotational Doppler-effect due to selective excitation of vector-vortex field in optical fiber,” Opt. Express 19, 448–457 (2011). [CrossRef]
  19. O. V. Angelsky, I. I. Mokhun, A. I. Mokhun, and M. S. Soskin, “Interferometric methods in diagnostics of polarization singularities,” Phys. Rev. E 65, 036602 (2002). [CrossRef]
  20. A. I. Mokhun, M. S. Soskin, and I. Freund, “Elliptical critical points: C-points, a-lines, and the sign rule,” Opt. Lett. 27, 995–997 (2002). [CrossRef]
  21. M. S. Soskin, V. Denisenko, and I. Freund, “Optical polarization singularities and elliptic stationary points,” Opt. Lett. 28, 1475–1477 (2003). [CrossRef] [PubMed]
  22. A. V. Volyar and T. A. Fadeeva, “Optics of singularities of a low mode fiber: optical vortices,” Opt. Spectros. 85, 272–280(1998).
  23. G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre-Gaussian beams,” Opt. Commun. 237, 89–95 (2004). [CrossRef]
  24. A. V. Volyar, V. Z. Zhilaitis, and T. A. Fadeeva, “Optical vortices in low-mode fibers: III. Dislocation reactions, phase transitions, and topological birefringence,” Opt. Spectrosc. 88, 397–405 (2000). [CrossRef]
  25. M. Born and E. W. Wolf, Principles of Optics, 6th ed.(Cambridge University, 1980).
  26. A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Y. Zel’dovich, “Optical Magnus effect,” Phys. Rev. A 45, 8204–8208 (1992). [CrossRef] [PubMed]
  27. O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319, 787–790(2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited