OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 25 — Sep. 1, 2011
  • pp: E177–E183

Study of modal properties in gold nanowire with ZnO cladding by using the finite element method

Kejalakshmy Namassivayane, Huda Tanvir, Anita Quadir, B. M. Azizur Rahman, and Kenneth T. V. Grattan  »View Author Affiliations


Applied Optics, Vol. 50, Issue 25, pp. E177-E183 (2011)
http://dx.doi.org/10.1364/AO.50.00E177


View Full Text Article

Enhanced HTML    Acrobat PDF (1081 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Zinc oxide is a wide-bandgap semiconductor material, which can be grown as a single crystal and also as a thin film. A gold nanowire with zinc oxide cladding can serve as a waveguide, which can combine the plasmonic features of a metal nanowire with the sensing properties of ZnO. Using an H-field-based fully vectorial finite element method, rigorous modal solutions for the characteristics of a gold nanowire core with zinc oxide cladding are obtained. The modal properties, including the effective index, spot size, confinement factor, and modal hybridness have been analyzed to determine the fundamental plasmonic mode of this waveguide.

© 2011 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons

History
Original Manuscript: March 16, 2011
Revised Manuscript: July 20, 2011
Manuscript Accepted: July 29, 2011
Published: August 16, 2011

Citation
Kejalakshmy Namassivayane, Huda Tanvir, Anita Quadir, B. M. Azizur Rahman, and Kenneth T. V. Grattan, "Study of modal properties in gold nanowire with ZnO cladding by using the finite element method," Appl. Opt. 50, E177-E183 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-25-E177


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Lal, S. Link, and N. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1, 641–648 (2007). [CrossRef]
  2. S. Maier, Plasmonic Fundamentals and Applications(Springer, 2007).
  3. P. Chen, S. Mwakwari, and A. Oyelere, “Gold nanoparticles: from nanomedicine to nanosensing,” Nanotechnol. Sci. Appl. 1, 45–66 (2008).
  4. L. Qiu, T. A. Larson, E. Vitkin, L. Guo, E. B. Hanlon, I. Itzkan, K. V. Sokolov, and L. T. Perelman, “Gold nanorod light scattering labels for biomedical imaging,” Biomed. Opt. Express 1, 135–142 (2010). [CrossRef]
  5. H. J. Huang, C. P. Yu, H. C. Chang, K. P. Chiu, H. M. Chen, R. S. Liu, and D. P. Tsai, “Plasmonic optical properties of a single gold nano-rod,” Opt. Express 15, 7132–7139 (2007). [CrossRef] [PubMed]
  6. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998). [CrossRef]
  7. T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, “A new detector for gaseous components using semi-conductive thin films,” Anal. Chem. 34, 1502–1503 (1962). [CrossRef]
  8. D. D. Lee and D. S. Lee, “Environmental gas sensors,” IEEE Sens. J. 1, 214–224 (2001). [CrossRef]
  9. A. Janotti and C. de Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys. 72, 126501 (2009). [CrossRef]
  10. C. Jagadish and S. J. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties and Applications (Elsevier, 2006).
  11. A. Janotti and C. de Walle, “Hydrogen multicenter bonds,” Nature 6, 44–47 (2007). [CrossRef]
  12. X. A. J. Wang and Q. Li, “Size-dependent electronic structures of ZnO nanowires,” Appl. Phys. Lett. 86, 201911 (2005). [CrossRef]
  13. V. A. L. Roy, A. B. Djurisic, W. K. Chan, J. Gao, H. F. Lui, and C. Surya, “Luminescent and structural properties of ZnO nanorods prepared under different conditions,” Appl. Phys. Lett. 83, 141–143 (2003). [CrossRef]
  14. G. F. Fine, L. M. Cavanagh, A. Afonja, and R. Binions, “Metal oxide semi-conductor gas sensors in environmental monitoring,” Sensors 10, 5469–5502 (2010). [CrossRef] [PubMed]
  15. S. W. Fana, A. K. Srivastavaa, and V. P. Dravid, “Nanopatterned polycrystalline ZnO for room temperature gas sensing,” Sens. Actuators B 144, 159–163 (2010). [CrossRef]
  16. B. M. A. Rahman and J. B. Davies, “Finite-element solution of integrated optical waveguide,” J. Lightwave Technol. 2, 682–688 (1984). [CrossRef]
  17. K. Saitoh and M. Koshiba, “Full vectorial finite element beam propagation with perfectly matched layers for anisotropic optical waveguides,” J. Lightwave Technol. 19, 405–413 (2001). [CrossRef]
  18. P. G. Etchegoin, E. Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705(2006). [CrossRef] [PubMed]
  19. P. G. Etchegoin, E. Ru, and M. Meyer, “Erratum: an analytic model for the optical properties of gold,” J. Chem. Phys. 127, 189901 (2007). [CrossRef]
  20. J. A. Gordon and R. W. Ziolkowski, “The design and stimulated performance of a coated nano-particle laser,” Opt. Express 15, 2622–2653 (2007). [CrossRef] [PubMed]
  21. T. Holden, P. Ram, F. H. Pollak, J. L. Freeouf, B. X. Yang, and M. C. Tamargo, “Spectral ellipsometry investigation of Zn0.53Cd0.47Se lattice matched to InP,” Phys. Rev. B 56, 4037–4046 (1997). [CrossRef]
  22. G. E. Jellison, Jr., and L. A. Boatner, “Optical functions of uniaxial ZnO determined by generalized ellipsometry,” Phys. Rev. B 58, 3586–3589 (1998). [CrossRef]
  23. G. E. Jellison, Jr., “Erratum: optical functions of uniaxial ZnO determined by generalized ellipsometry,” Phys. Rev. B 65, 049902 (2001). [CrossRef]
  24. S. Albaladejo, R. Gómez-Medina, L. S. Froufe-Pérez, H. Marinchio, R. Carminati, J. F. Torrado, G. Armelles, A. García-Martín, and J. J. Sáenz, “Radiative corrections to the polarizability tensor of an electrically small anisotropic dielectric particle,” Opt. Express 18, 3556–3567 (2010). [CrossRef] [PubMed]
  25. A. Yariv, Quantum Electronics (Wiley, 1989).
  26. N. Kejalakshmy, A. Agrawal, Y. Aden, D. Leung, B. M. A. Rahman, and K. T. V. Grattan, “Characterization of silicon nanowire by use of the full-vectorial finite element method,” Appl. Opt. 49, 3173–3181 (2010). [CrossRef] [PubMed]
  27. International Organization for Standardization, “Lasers and laser-related equipment—test methods for laser beam widths, divergence and beam propagation ratios,” ISO 11146 (International Organization for Standardization, 2005).
  28. E. D. Finlayson, J. M. Heaton, B. M. A. Rahman, and S. S. A. Obayya, “Polarization conversion in passive deep-etched GaAs/AlGaAs waveguides,” J. Lightwave Technol. 24, 1425–1432 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited