OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 25 — Sep. 1, 2011
  • pp: E65–E75

High-speed electrical switching in optical fibers [Invited]

Walter Margulis, Zhangwei Yu, Mikael Malmström, Patrik Rugeland, Harald Knape, and Oleksandr Tarasenko  »View Author Affiliations

Applied Optics, Vol. 50, Issue 25, pp. E65-E75 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1580 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we give an overview of recent results on switching of light in fibers with internal electrodes. Polarization rotation, nanosecond gating, and wavelength switching in fiber Bragg gratings and in long period gratings are discussed. Applications are exemplified in Q-switching fiber lasers and in RF-signal filtering.

© 2011 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(060.4005) Fiber optics and optical communications : Microstructured fibers

Original Manuscript: March 23, 2011
Manuscript Accepted: June 13, 2011
Published: July 7, 2011

Virtual Issues
(2011) Advances in Optics and Photonics

Walter Margulis, Zhangwei Yu, Mikael Malmström, Patrik Rugeland, Harald Knape, and Oleksandr Tarasenko, "High-speed electrical switching in optical fibers [Invited]," Appl. Opt. 50, E65-E75 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Blow, N. J. Doran, and B. K. Nayar, “Experimental demonstration of optical soliton switching in an all-fiber nonlinear sagnac interferometer,” Opt. Lett. 14, 754–756 (1989). [CrossRef] [PubMed]
  2. B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 27, 704–705 (1991). [CrossRef]
  3. K. Uchiyama, H. Takara, S. Kawanishi, T. Morioka, and M. Saruwatari, “Ultrafast polarization-independent all-optical switching using a polarization diversity scheme in the nonlinear optical loop mirror,” Electron. Lett. 28, 1864–1866(1992). [CrossRef]
  4. A. D. Ellis and D. A. Cleland, “Ultrafast all optical switching in 2 wavelength amplifying nonlinear optical loop mirror,” Electron. Lett. 28, 405–406 (1992). [CrossRef]
  5. M. Asobe, H. Itoh, and K. Kubodera, “Ultrafast all-optical switching in a walk-off-suppressed nonlinear fiber loop mirror switch,” Opt. Commun. 88, 446–450 (1992). [CrossRef]
  6. M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142–148 (1997). [CrossRef]
  7. M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass-fiber,” IEEE Photon. Technol. Lett. 4, 362–365 (1992). [CrossRef]
  8. D. Marchese, M. De Sario, A. Jha, A. K. Kar, and E. C. Smith, “Highly nonlinear GeS2-based chalcohalide glass for all-optical twin-core-fiber switching,” J. Opt. Soc. Am. B 15, 2361–2370 (1998). [CrossRef]
  9. M. Asobe, H. Kobayashi, H. Itoh, and T. Kanamori, “Laser-diode-driven ultrafast all-optical switching by using highly nonlinear chalcogenide glass-fiber,” Opt. Lett. 18, 1056–1058(1993). [CrossRef] [PubMed]
  10. A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000). [CrossRef]
  11. I. V. Kabakova, T. Walsh, C. M. de Sterke, and B. J. Eggleton, “Performance of field-enhanced optical switching in fiber Bragg gratings,” J. Opt. Soc. Am. B 27, 1343–1351 (2010). [CrossRef]
  12. I. V. Kabakova, D. Grobnic, S. Mihailov, E. C. Mägi, C. M. de Sterke, and B. J. Eggleton, “Bragg grating-based optical switching in a bismuth-oxide fiber with strong χ(3)-nonlinearity,” Opt. Express 19, 5868–5873 (2011). [CrossRef] [PubMed]
  13. L. J. Donalds, W. G. French, W. C. Mitchell, R. M. Swinehart, and T. Wei, “Electric field sensitive optical fibre using piezoelectric polymer coating,” Electron. Lett. 18, 327–328(1982). [CrossRef]
  14. J. Jarzynski, “Frequency response of a single-mode optical fiber phase modulator utilizing a piezoelectric plastic jacket,” J. Appl. Phys. 55, 3243–3250 (1984). [CrossRef]
  15. M. Leigh, W. Shi, J. Zong, J. F. Wang, S. B. Jiang, and N. Peyghambarian, “Compact, single-frequency all-fiber Q-switched laser at 1 μm,” Opt. Lett. 32, 897–899 (2007). [CrossRef] [PubMed]
  16. I. L. Villegas, C. Cuadrado-Laborde, J. Abreu-Afonso, A. Díez, J. L. Cruz, M. A. Martínez-Gámez, and M. V. Andrés, “Mode-locked Yb-doped all-fiber laser based on in-fiber acoustooptic modulation,” Laser Phys. Lett. 8, 227–231 (2011). [CrossRef]
  17. Proximion, “White Paper on Wistom,” http://www.proximion.com/sites/default/files/technology/100499-C-MAN-WISTOM_White_Paper_-_Optical_Layer_Monitoring_web.pdf.
  18. M. Imai, S. Satoh, T. Sakaguchi, K. Motoi, and A. Odajima, “100 MHz-bandwidth response of a fiber phase modulator with thin piezoelectric jacket,” IEEE Photon. Technol. Lett. 6, 956–959 (1994). [CrossRef]
  19. A. Gusarov, K. Nguyen Hong, H. G. Limberger, R. P. Salathe, and G. R. Fox, “High-performance optical phase modulation using piezoelectric ZnO-coated standard telecommunication fiber,” J. Lightwave Technol. 14, 2771–2777 (1996). [CrossRef]
  20. K. Nguyen Hong, H. P. Limberger, R. P. Salath, and G. R. Fox, “400 MHz-bandwidth all-fiber phase modulators with ZnO coating on standard telecommunication fiber,” IEEE Photon. Technol. Lett. 8, 629–631 (1996). [CrossRef]
  21. N. H. Ky, H. G. Limberger, R. P. Salathe, and G. R. Fox, “Optical performance of miniature all-fiber phase modulators with ZnO coating,” J. Lightwave Technol. 14, 23–26 (1996). [CrossRef]
  22. H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, “All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile,” Opt. Lett. 22, 1476–1478 (1997). [CrossRef]
  23. L. Li, G. Wylangowski, D. N. Payne, and R. D. Birch, “Broadband metal/glass single-mode fibre polarisers,” Electron. Lett. 22, 1020–1022 (1986). [CrossRef]
  24. L. Li, R. D. Birch, and D. N. Payne, “An all fibre electro-optic Kerr modulator,” in IEE Colloquium on Advanced Fibre Waveguide Devices (IEE, 1986), 253–256.
  25. P. G. Kazansky, P. S. Russell, and H. Takebe, “Glass fiber poling and applications,” J. Lightwave Technol. 15, 1484–1493(1997). [CrossRef]
  26. W. Margulis, F. C. Garcia, E. N. Hering, L. C. G. Valente, B. Lesche, F. Laurell, and I. C. S. Carvalho, “Poled glasses,” MRS Bull. 23, 31–35 (1998).
  27. S. C. Fleming and H. An, “Poled glasses and poled fibre devices,” J. Ceram. Soc. Jpn. 116, 1007–1023 (2008). [CrossRef]
  28. R. Kashyap, “Poling of glasses and optical fibers,” in Handbook of Fiber Bragg Gratings, 2nd ed. (Academic, 2010), pp. 527–596. [CrossRef]
  29. J. Li, N. Myren, W. Margulis, B. Ortega, G. Puerto, D. Pastor, J. Capmany, M. Belmonte, and V. Pruneri, “Systems measurements of 2×2 poled fiber switch,” IEEE Photon. Technol. Lett. 17, 2571–2573 (2005). [CrossRef]
  30. H. Knape and W. Margulis, “All-fiber polarization switch,” Opt. Lett. 32, 614–616 (2007). [CrossRef] [PubMed]
  31. Z. Yu, W. Margulis, O. Tarasenko, H. Knape, and P.-Y. Fonjallaz, “Nanosecond switching of fiber Bragg gratings,” Opt. Express 15, 14948–14953 (2007). [CrossRef] [PubMed]
  32. Z. Yu, W. Margulis, P.-Y. Fonjallaz, and O. Tarasenko, “Physics of electrically switched fiber Bragg gratings,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, 2008 OSA Technical Digest Series (Optical Society of America, 2008), paper CMK1. [PubMed]
  33. Z. Yu, O. Tarasenko, W. Margulis, and P. Y. Fonjallaz, “Birefringence switching of Bragg gratings in fibers with internal electrodes,” Opt. Express 16, 8229–8235 (2008). [CrossRef] [PubMed]
  34. Z. Yu, W. Margulis, and P.-Y. Fonjallaz, “High speed switching,” in Handbook of Manipulating Light with Fibre Bragg Gratings: Nanosecond Switching Using In-Fibre Electrodes and Ultra-Narrow Filtering of Millimetre-wave Signals, (VDM, 2008), pp. 39–76. [PubMed]
  35. Z. Yu, H. Knape, O. Tarasenko, R. Koch, and W. Margulis, “All-fiber single-pulse selection and nanosecond gating,” Opt. Lett. 34, 1024–1026 (2009). [CrossRef] [PubMed]
  36. H. M. Xie, P. Dabkiewicz, R. Ulrich, and K. Okamoto, “Side-hole fiber for fiber-optic pressure sensing,” Opt. Lett. 11, 333–335 (1986). [CrossRef] [PubMed]
  37. G. Chesini, C. M. B. Cordeiro, C. J. S. de Matos, M. Fokine, I. C. S. Carvalho, and J. C. Knight, “All-fiber devices based on photonic crystal fibers with integrated electrodes,” Opt. Express 17, 1660–1665 (2009). [CrossRef] [PubMed]
  38. A. Iocco, H. G. Limberger, and R. P. Salathe, “Bragg grating fast tunable filter,” Electron. Lett. 33, 2147–2148 (1997). [CrossRef]
  39. A. Iocco, H. G. Limberger, R. P. Salathe, L. A. Everall, K. E. Chisholm, J. A. R. Williams, and I. Bennion, “Bragg grating fast tunable filter for wavelength division multiplexing,” J. Lightwave Technol. 17, 1217–1221 (1999). [CrossRef]
  40. R. Kashyap, Fiber Bragg Gratings, 2nd ed. (Academic, 2010).
  41. M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39, 509–511 (2003). [CrossRef]
  42. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65(1996). [CrossRef]
  43. Z. Yu, M. Malmström, C. Sterner, O. Tarasenko, W. Margulis, and P. Y. Fonjallaz, “Dynamics of long-period gratings tuned with internal fiber electrodes,” Opt. Lett. 36, 633–635(2011). [CrossRef] [PubMed]
  44. S. H. Lee, B. H. Kim, and W.-T. Han, “Effect of filler metals on the temperature sensitivity of side-hole fiber,” Opt. Express 17, 9712–9717 (2009). [CrossRef] [PubMed]
  45. G. Chesini, V. A. Serrão, M. A. R. Franco, and C. M. B. Cordeiro, “Analysis and optimization of an all-fiber device based on photonic crystal fiber with integrated electrodes,” Opt. Express 18, 2842–2848 (2010). [CrossRef] [PubMed]
  46. N. F. Borrelli and R. A. Miller, “Determination of the individual strain–optic coefficients of glass by an ultrasonic technique,” Appl. Opt. 7, 745–750 (1968). [CrossRef] [PubMed]
  47. P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18, 1013–1015 (2006). [CrossRef]
  48. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27, B63–B92 (2010). [CrossRef]
  49. T. V. Andersen, P. Pérez-Millán, S. R. Keiding, S. Agger, R. Duchowicz, and M. V. Andrés, “All-fiber actively Q-switched Yb-doped laser,” Opt. Commun. 260, 251–256 (2006). [CrossRef]
  50. M. Delgado-Pinar, D. Zalvidea, A. Diez, P. Perez-Millan, and M. Andres, “Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating,” Opt. Express 14, 1106–1112 (2006). [CrossRef] [PubMed]
  51. M. Delgado-Pinar, A. Diez, J. L. Cruz, and M. V. Andres, “Single-frequency active Q-switched distributed fiber laser using acoustic waves,” Appl. Phys. Lett. 90, 171110 (2007). [CrossRef]
  52. Z. W. Yu, M. Malmstrom, O. Tarasenko, W. Margulis, and F. Laurell, “Actively Q-switched all-fiber laser with an electrically controlled microstructured fiber,” Opt. Express 18, 11052–11057. [CrossRef] [PubMed]
  53. M. Malmström, Z. Yu, W. Margulis, O. Tarasenko, and F. Laurell, “All-fiber cavity dumping,” Opt. Express 17, 17596–17602 (2009). [CrossRef] [PubMed]
  54. P. Rugeland, Z. Yu, C. Sterner, O. Tarasenko, G. Tengstrand, and W. Margulis, “Photonic scanning receiver using an electrically tuned fiber Bragg grating,” Opt. Lett. 34, 3794–3796(2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited