OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 25 — Sep. 1, 2011
  • pp: E7–E12

Use of common path phase sensitive spectral domain optical coherence tomography for refractive index measurements

Yogesh Verma, Purnananda Nandi, K. Divakar Rao, Mrinalini Sharma, and Pradeep Kumar Gupta  »View Author Affiliations

Applied Optics, Vol. 50, Issue 25, pp. E7-E12 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (604 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the use of a common path phase sensitive spectral domain optical coherence tomography setup for the measurement of the refractive index (RI) of a biomimetic material (glucose solution in water having intralipid as the scattering medium) and a single biological cell (keratinocyte). The RI of glucose solutions could be measured with a precision of 0.00015 , which corresponds to a precision of 2 nm in the optical path length measurement in our setup. The precision obtained in the measurement of the RI of a single keratinocyte cell was 0.0004 .

© 2011 Optical Society of America

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(110.3175) Imaging systems : Interferometric imaging

Original Manuscript: March 15, 2011
Manuscript Accepted: May 27, 2011
Published: June 27, 2011

Virtual Issues
Vol. 6, Iss. 10 Virtual Journal for Biomedical Optics

Yogesh Verma, Purnananda Nandi, K. Divakar Rao, Mrinalini Sharma, and Pradeep Kumar Gupta, "Use of common path phase sensitive spectral domain optical coherence tomography for refractive index measurements," Appl. Opt. 50, E7-E12 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367(2003). [CrossRef] [PubMed]
  2. A. G. Podoleanu, “Optical coherence tomography,” Br. J. Radiol. 78, 976–988 (2005). [CrossRef] [PubMed]
  3. A. F. Fercher, “Optical coherence tomography—development, principles, applications,” Zeitschrift fu¨r Medizinische Physik 20, 251–276 (2010). [CrossRef]
  4. Y. Verma, K. D. Rao, M. K. Suresh, H. S. Patel, and P. K. Gupta, “Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography,” Appl. Phys. B 87, 607–610 (2007). [CrossRef]
  5. A. M. Zysk, S. G. Adie, J. J. Armstrong, M. S. Leigh, A. Paduch, D. D. Sampson, F. T. Nguyen, and S. A. Boppart, “Needle-based refractive index measurement using low-coherence interferometry,” Opt. Lett. 32, 385–387 (2007). [CrossRef] [PubMed]
  6. X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002). [CrossRef] [PubMed]
  7. M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Phase contrast coherence microscopy based on transverse scanning,” Opt. Lett. 34, 1750–1752 (2009). [CrossRef] [PubMed]
  8. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett. 30, 2131–2133 (2005). [CrossRef] [PubMed]
  9. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral domain phase microscopy,” Opt. Lett. 30, 1162–1164 (2005). [CrossRef] [PubMed]
  10. C. Yang, A. Wax, R. R. Dasari, and M. S. Feld, “2π ambiguity-free optical distance measurement with subnanometer precision with a novel phase-crossing low coherence interferometer,” Opt. Lett. 27, 77–79 (2002). [CrossRef]
  11. J. Zhang, B. Rao, L. Yu, and Z. Chen, “High-dynamic range quantitative phase imaging with spectral domain phase microscopy,” Opt. Lett. 34, 3442–3444 (2009). [CrossRef] [PubMed]
  12. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003). [CrossRef] [PubMed]
  13. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigation of fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005). [CrossRef] [PubMed]
  14. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160(1982). [CrossRef]
  15. S. W. Kim and S. W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14, 5954–5960 (2006). [CrossRef] [PubMed]
  16. S. K. Debnath, M. P. Kothiyal, and S. W. Kim, “Evaluation of the spectral phase in spectrally resolved white-light interfrometry: Comparative study of single frame techniques,” Opt. Lasers Eng. 47, 1125–1130 (2009). [CrossRef]
  17. J. Na, H. Y. Choi, E. S. Choi, C. Lee, and B. H. Lee, “Self-referenced spectral interferometry for simultaneous measurements of thickness and refractive index,” Appl. Opt. 48, 2461–2467 (2009). [CrossRef] [PubMed]
  18. R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26, 992–994(2001). [CrossRef]
  19. K. V. Larin, T. Akkin, R. O. Esenaliev, M. Motamedi, and T. E. Milner, “Phase-sensitive optical low-coherence reflectometry for the detection of analyte concentrations,” Appl. Opt. 43, 3408–3414 (2004). [CrossRef] [PubMed]
  20. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361–9373 (2005). [CrossRef] [PubMed]
  21. F. Dubois, L. Joannes, and J. C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085–7094 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited