OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 26 — Sep. 10, 2011
  • pp: 5059–5063

Composite cavity fiber laser sensors based on weak feedback

Jianzhong Zhang, Quan Chai, QianQian Hao, Yubin Ge, Xingliang Li, Qi Li, Weimin Sun, Libo Yuan, and Gangding Peng  »View Author Affiliations


Applied Optics, Vol. 50, Issue 26, pp. 5059-5063 (2011)
http://dx.doi.org/10.1364/AO.50.005059


View Full Text Article

Enhanced HTML    Acrobat PDF (400 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel composite cavity optical fiber laser (CCFL) sensor, based on weak feedback of the optical fiber end face, is proved theoretically and experimentally. The application of the vibration measurement based on the CCFL sensor is demonstrated to prove its feasibility.

© 2011 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 13, 2011
Revised Manuscript: July 8, 2011
Manuscript Accepted: July 22, 2011
Published: September 5, 2011

Citation
Jianzhong Zhang, Quan Chai, QianQian Hao, Yubin Ge, Xingliang Li, Qi Li, Weimin Sun, Libo Yuan, and Gangding Peng, "Composite cavity fiber laser sensors based on weak feedback," Appl. Opt. 50, 5059-5063 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-26-5059


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J.-L. Archambault and S. G. Grubb, “Fiber gratings in lasers and amplifiers,” J. Lightwave Technol. 15, 1378–1390 (1997). [CrossRef]
  2. G. A. Cranch, G. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J. 8, 1161–1172 (2008). [CrossRef]
  3. S. W. Lovseth, J. T. Kringlebotn, E. Ronnekleiv, and K. Blotekjaer, “Fiber distributed-feedback lasers used as acoustic sensors in air,” Appl. Opt. 38, 4821–4830 (1999). [CrossRef]
  4. L.-Y. Shao, X. Dong, H.-Y. Tam, A. P. Zhang, and S. L. He, “Fibre-optic load sensor based on polarimetric DBR fibre laser,” Electron. Lett. 44, 99–100 (2008). [CrossRef]
  5. O. Hadeler, E. Rønnekleiv, M. Ibsen, and R. I. Laming, “Polarimetric distributed feedback fiber laser sensor for simultaneous strain and temperature measurements,” Appl. Opt. 38, 1953–1958 (1999). [CrossRef]
  6. B.-O. Guan, H.-Y. Tam, S.-T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fibre laser,” IEEE Photon. Technol. Lett. 17, 169–171 (2005). [CrossRef]
  7. G. A. Cranch, M. A. Englund, and C. K. Kirkendall, “Intensity noise characteristics of erbium-doped distributed-feedback fiber lasers,” IEEE J. Quantum Electron. 39, 1579–1587(2003). [CrossRef]
  8. L. Ma, Y. Hu, S. Xiong, Z. Meng, and Z. Hu, “Intensity noise and relaxation oscillation of a fiber-laser sensor array integrated in a single fiber,” Opt. Lett. 35, 1795–1797 (2010). [CrossRef] [PubMed]
  9. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980). [CrossRef]
  10. W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577–1587 (1994). [CrossRef]
  11. S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31, 113–119(1995). [CrossRef]
  12. N. Servagent, T. Bosch, and M. Lescure, “A laser displacement sensor using the self-mixing effect for modal analysis and defect detection,” IEEE Trans. Instrum. Meas. 46, 847–851(1997). [CrossRef]
  13. G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A: Pure Appl. Opt. 4, S283–S284 (2002). [CrossRef]
  14. H. Huan and M. Wang, “Self-mixing interference effect of DFB semiconductor lasers,” Appl. Phys. B 79, 325–330 (2004). [CrossRef]
  15. J. Zhou and M. Wang, “Effects of self-mixing interference on gain-coupled distributed-feedback lasers,” Opt. Express 13, 1848–1854 (2005). [CrossRef] [PubMed]
  16. J. Zhou, M. Wang, and D. Han, “Experiment observation of self-mixing interference in distributed feedback laser,” Opt. Express 14, 5301–5306 (2006). [CrossRef] [PubMed]
  17. J. Zhang, Q. Chai, X. Li, Q. Hao, Q. Li, W. Sun, and L. Yuan, “Composite cavity fiber laser sensor based on feedback modulation,” in Proceedings of IEEE Sensors (IEEE, 2010), pp. 1714–1717.
  18. S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Coupled-cavity erbium fiber lasers incorporating fiber grating reflectors,” Opt. Lett. 18, 2023–2025 (1993). [CrossRef] [PubMed]
  19. A. I. Azmi, D. Sen, and G.-D. Peng, “Sensitivity enhancement in composite cavity fiber laser hydrophone,” J. Lightwave Technol. 28, 1844–1850 (2010). [CrossRef]
  20. C. R. Giles and E. Desurvire, “Modeling erbium doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991). [CrossRef]
  21. G. A. Cranch, P. J. Nash, and C. K. Kirkendall, “Large scale remotely interrogated arrays of fiber optical interferometric sensors for underwater acoustic applications,” IEEE Sens. J. 3, 19–30 (2003). [CrossRef]
  22. N. J. Frigo, A. Dandridge, and A. B. Tveten, “Technique for elimination of polarization fading in fiber interferometers,” Electron. Lett. 20, 319–320 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited