Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Ultrasensitive guided-mode resonance biosensors superimposed with vertical-sidewall roughness

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we present our investigations of the effects of vertical-sidewall roughness (VSR) on guided-mode resonance (GMR) filters made of subwavelength grating for applications to ultrasensitive biosensors operated under IR illumination. We designed the spectral FWHM of the grating filter to be as narrow as possible in order to emphasize the sensitivity and VSR effects. Three types of VSR morphologies on the grating—in terms of the correlation length ξ and the rms of the maximum roughness deviation σ—were considered and evaluated. Rigorous coupled-wave analysis was then implemented to quantify the shifts in the reflective resonance peak wavelength value (PWV) of the grating filter. Our simulations show that for specific ξ values, the PWVs remain constant even if σ becomes as large as 10nm; this indicates dramatic bandgaplike stripes, which are similar to the bandgaps observed in the band diagrams of photonic crystals in the ξσ diagram that we have proposed in this study. In other words, the effects of VSR on the GMR biosensor performance are insignificant when ξ is located at certain bands; therefore, this type of roughness is highly tolerable even if the linewidth of the filter is decreased to only a few tens of nanometers.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Biosensor based on two-dimensional gradient guided-mode resonance filter

Nien-Zu Yang, Chan-Te Hsiung, and Cheng-Sheng Huang
Opt. Express 29(2) 1320-1332 (2021)

Optimally designed narrowband guided-mode resonance reflectance filters for mid-infrared spectroscopy

Jui-Nung Liu, Matthew V. Schulmerich, Rohit Bhargava, and Brian T. Cunningham
Opt. Express 19(24) 24182-24197 (2011)

High-performance sensor achieved by hybrid guide-mode resonance/surface plasmon resonance platform

La Wang, Tian Sang, Jian Gao, Xin Yin, and Honglong Qi
Appl. Opt. 57(25) 7338-7343 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.