OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 26 — Sep. 10, 2011
  • pp: 5149–5157

Mueller matrix measurements of algae with different shape and size distributions

Øyvind Svensen, Jakob J. Stamnes, Morten Kildemo, Lars Martin Sandvik Aas, Svein Rune Erga, and Øyvind Frette  »View Author Affiliations

Applied Optics, Vol. 50, Issue 26, pp. 5149-5157 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1823 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The full Mueller matrix was measured to obtain the polarization state of the scattered light for a variety of algae with different shapes, wall compositions, sizes, and refractive indices. The experimental setup was a multiple laser Mueller matrix ellipsometer, by which measurements were performed for scattering angles from 16 ° to 160 ° sampled at every second degree for wavelengths of 473 nm and 532 nm . Previously, the polarization of light scattered from microalgae was investigated only for a few species, and the Mueller matrix was found to have little variation between the species. In our work a total of 11 algal species were investigated, representing diatoms, dinoflagellates, coccolithophorids, green algae, and a cryptophyte. The selection of species was made to obtain high variability in shape, size, cell wall, and refractive index. As in previous investigations, very small variations were found between species for most of the Mueller matrix elements, but noticeable variations were found for M 11 , ( M 12 + M 21 ) / 2 and ( M 33 + M 44 ) / 2 .

© 2011 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(010.4455) Atmospheric and oceanic optics : Oceanic propagation
(010.4458) Atmospheric and oceanic optics : Oceanic scattering
(290.5855) Scattering : Scattering, polarization

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: January 13, 2011
Revised Manuscript: June 29, 2011
Manuscript Accepted: June 30, 2011
Published: September 9, 2011

Virtual Issues
Vol. 6, Iss. 10 Virtual Journal for Biomedical Optics

Øyvind Svensen, Jakob J. Stamnes, Morten Kildemo, Lars Martin Sandvik Aas, Svein Rune Erga, and Øyvind Frette, "Mueller matrix measurements of algae with different shape and size distributions," Appl. Opt. 50, 5149-5157 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Ø. Svensen, Ø. Frette, and S. R. Erga, “Scattering properties of microalgae: the effect of size and cell wall,” Appl. Opt. 46, 5762–5769 (2007). [CrossRef] [PubMed]
  2. J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. Olseng, “Laboratory measurements of light scattering from marine particles,” Limnol. Oceanogr. Methods 5, 34–40 (2007). [CrossRef]
  3. T. J. Petzold, “Volume scattering functions for selected ocean waters,” in Benchmark Papers in Optics: Light in the Sea, J.Tyler, ed. (Halstead, 1972), Vol. 3, pp. 152–174.
  4. C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035–1050(2002). [CrossRef] [PubMed]
  5. R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition, and taxonomy,” J. Plankton Res. 26, 191–212 (2004). [CrossRef]
  6. F. Stabo-Eeg, M. Kildemo, I. S. Nerbo, and M. Lindgren, “Well-conditioned multiple laser Mueller matrix ellipsometer,” Opt. Eng. 47, 073604 (2008). [CrossRef]
  7. E. S. Fry and K. J. Voss, “Measurement of the Mueller matrix for phytoplankton,” Limnol. Oceanogr. 30, 1322–1326(1985). [CrossRef]
  8. K. J. Voss and E. S. Fry, “Measurement of the Mueller matrix for ocean water,” Appl. Opt. 23, 4427–4439 (1984). [CrossRef] [PubMed]
  9. M. S. Quinby-Hunt, A. J. Hunt, K. Lofftus, and D. Shapiro, “Polarized-light scattering studies of marine Chlorella,” Limnol. Oceanogr. 34, 1587–1600 (1989). [CrossRef]
  10. K. Witkowski, T. Krol, A. Zielinski, and E. Kuten, “A light-scattering matrix for unicellular marine phytoplankton,” Limnol. Oceanogr. 43, 859–869 (1998). [CrossRef]
  11. K. Witkowski, L. Wolinski, Z. Turzynski, D. Gedziorowska, and A. Zielinski, “The investigation of kinetic growth of chlorella-vulgaris cells by the method of integral and dynamic light-scattering,” Limnol. Oceanogr. 38, 1365–1372 (1993). [CrossRef]
  12. H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, S. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998). [CrossRef]
  13. M. E. Zugger, A. Messmer, T. J. Kane, J. Prentice, B. Cancannon, A. Laux, and L. Mullen, “Optical scattering properties of phytoplankton: Measurements and comparison of various species at scattering angles between 1 degrees and 170 degrees,” Limnol. Oceanogr. 53, 381–386 (2008). [CrossRef]
  14. M. Hofer and O. Glatter, “Mueller matrix calculations for randomly oriented rotationally symmetric objects with low contrast,” Appl. Opt. 28, 2389–2400 (1989). [CrossRef] [PubMed]
  15. A. Kouzoubov, M. J. Brennan, and J. C. Thomas, “Treatment of polarization in laser remote sensing of ocean water,” Appl. Opt. 37, 3873–3885 (1998). [CrossRef]
  16. A. C. Holland and G. Gagne, “Scattering of polarized light by polydisperse systems of irregular particles,” Appl. Opt. 9, 1113–1121 (1970). [CrossRef] [PubMed]
  17. R. J. Perry, A. J. Hunt, and D. R. Huffman, “Experimental determinations of Mueller scattering matrices for nonspherical particles,” Appl. Opt. 17, 2700–2710 (1978). [CrossRef] [PubMed]
  18. J. K. Lotsberg and J. J. Stamnes, “Impact of particulate oceanic composition on the radiance and polarization of underwater and backscattered light,” Opt. Express 18, 10432–10445 (2010). [CrossRef] [PubMed]
  19. S. Asano and M. Sato, “Light-scattering by randomly oriented spheroidal particles,” Appl. Opt. 19, 962–974 (1980). [CrossRef] [PubMed]
  20. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  21. P. C. Waterman, “Matrix formulation of electromagnetic scattering,” Proc. IEEE 53, 805–812 (1965). [CrossRef]
  22. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996). [CrossRef]
  23. A. Macke, M. I. Mishchenko, K. Muinonen, and B. E. Carlson, “Scattering of light by large nonspherical particles: ray-tracing approximation versus T-matrix method,” Opt. Lett. 20, 1934–1936 (1995). [CrossRef] [PubMed]
  24. H. van de Hulst, Light Scattering by Small Particles(Wiley, 1957).
  25. R. M. A. Azzam, “Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal,” Opt. Lett. 2, 148–150 (1978). [CrossRef] [PubMed]
  26. P. Hauge, “Mueller matrix ellipsometry with imperfect compensators,” J. Opt. Soc. Am. 68, 1519–1528 (1978). [CrossRef]
  27. D. H. Goldstein, “Mueller matrix dual-rotating retarder polarimeter,” Appl. Opt. 31, 6676–6683 (1992). [CrossRef] [PubMed]
  28. R. C. Thompson, J. R. Bottiger, and E. S. Fry, “Measurement of polarized light interactions via the Mueller matrix,” Appl. Opt. 19, 1323–1332 (1980). [CrossRef] [PubMed]
  29. A. de Martino, Y. K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28, 616–618 (2003). [CrossRef] [PubMed]
  30. J. M. Ladstein, M. Kildemo, G. K. Svendsen, I. S. Nerbø, and F. Stabo-Eeg, “Characterisation of liquid crystals for broadband optimal design of Mueller matrix ellipsometers,” Proc. SPIE 6587, 65870D (2007). [CrossRef]
  31. E. Compain, S. Poirier, and B. Drevillon, “General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix ellipsometers,” Appl. Opt. 38, 3490–3502 (1999). [CrossRef]
  32. J. S. Tyo, “Noise equalization in Stokes parameter images obtained by use of variable-retardance polarimeters,” Opt. Lett. 25, 1198–1200 (2000). [CrossRef]
  33. W. H. Slade and E. S. Boss, “Calibrated near-forward volume scattering function obtained from the LISST particle sizer,” Opt. Express 14, 3602–3615 (2006). [CrossRef] [PubMed]
  34. Y. C. Agrawal, “The optical volume scattering function: Temporal and vertical variability in the water column off the New Jersey coast,” Limnol. Oceanogr. 50, 1787–1794 (2005). [CrossRef]
  35. F. Perrin, “Polarization of light scattered by isotropic opalescent media,” J. Chem. Phys. 10, 415–427 (1942). [CrossRef]
  36. S. H. Cloude, “Conditions for the physical realisability of matrix operators in polarimetry,” SPIE Rev. 1166, 177–185(1989).
  37. R. Wayne, A. Kadota, M. Watanabe, and M. Furuya, “Photomovement in Dunaliella salina: Fluence rate-response curves and action spectra,” Planta 184, 515–524 (1991). [CrossRef] [PubMed]
  38. O. A. Sieneshchekov, K. H. Jung, and J. L. Spudich, “Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii,” Proc. Natl. Acad. Sci. 99, 8689–8694 (2002).
  39. W. M. Balch, D. T. Drapeau, T. L. Cucci, D. Vaillancourt, K. A. Kilpatrick, and J. J. Fritz, “Optical backscattering by calcifying algae: Separating the contribution of particulate inorganic and organic carbon fractions,” J. Geophys. Res. 104, 1541–1558 (1999). [CrossRef]
  40. L. M. S. Aas, P. G. Ellingsen, M. Kildemo, and M. Lindgren, “Dynamic response of a fast near infra-red Mueller matrix ellipsometer,” J. Mod. Opt. 57, 1603–1610 (2010). [CrossRef]
  41. H. P. Grossart and M. Simon, “Interactions of planktonic algae and bacteria: effects on algal growth and organic matter dynamics,” Aquat. Microb. Ecol. 47, 163–176 (2007). [CrossRef]
  42. R. Sigel and A. Erbe, “Effects of sample polydispersity and beam profile on ellipsometric light scattering,” Appl. Opt. 47, 2161–2170 (2008). [CrossRef] [PubMed]
  43. A. Erbe and R. Sigel, “Ellipsometric light scattering to probe the interface of colloids—current applications and future challenges,” EPJ Web Conf. 5, 02001 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited