OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 26 — Sep. 10, 2011
  • pp: 5169–5177

Diffractive incremental and absolute coding principle for optical rotary sensors

David Hopp, Christof Pruss, Wolfgang Osten, Jonathan Seybold, Karl-Peter Fritz, Tim Botzelmann, Volker Mayer, and Heinz Kück  »View Author Affiliations


Applied Optics, Vol. 50, Issue 26, pp. 5169-5177 (2011)
http://dx.doi.org/10.1364/AO.50.005169


View Full Text Article

Enhanced HTML    Acrobat PDF (1814 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Rotary sensors are an essential component in numerous applications where a rotation movement has to be detected. With optical encoders, a high angular resolution can be achieved. As a disadvantage, the resolution enhancement is associated with increasing cost. To overcome this issue, a coding principle is presented that uses a diffractive solid measure on a microstructured plastic disc. Like a DVD, this encoder disc can be manufactured in a cost effective injection molding process. For this approach, a differential incremental code, as well as an absolute code, has been developed.

© 2011 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(230.0040) Optical devices : Detectors
(230.0230) Optical devices : Optical devices
(230.1950) Optical devices : Diffraction gratings
(230.4685) Optical devices : Optical microelectromechanical devices
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Diffraction and Gratings

History
Original Manuscript: April 20, 2011
Revised Manuscript: July 14, 2011
Manuscript Accepted: July 14, 2011
Published: September 9, 2011

Citation
David Hopp, Christof Pruss, Wolfgang Osten, Jonathan Seybold, Karl-Peter Fritz, Tim Botzelmann, Volker Mayer, and Heinz Kück, "Diffractive incremental and absolute coding principle for optical rotary sensors," Appl. Opt. 50, 5169-5177 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-26-5169


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Renishaw, “Non-contact position encoders,” (2011) www.renishaw.com.
  2. L. Silberbauer and M. Plankensteiner, “Datenbus ersetzt mechanische Lenksäule,” Mechatronik F&M 12, 58–61 (2006).
  3. W. J. Fleming, “Overview of automotive sensors,” IEEE Sens. J. 1, 296–308 (2001). [CrossRef]
  4. P. R. Belanger, P. Dobrovolny, A. Helmy, and X. Zhang, “Estimation of angular velocity and acceleration from shaft-encoder measurements,” Internat. J. Robotics Res. 17, 1225–1233 (1998). [CrossRef]
  5. T. Kojima, Y. Kikuchi, S. Seki, and H. Wakiwaka, “Study on high accuracy optical encoder with 30 bits,” in 8th IEEE International Workshop on Advanced Motion Control, 2004. AMC ’04 (IEEE, 2004), pp. 493–498. [CrossRef]
  6. Hengstler, “Drehgeber für die industrielle Automation,” (2011) www.hengstler.com.
  7. IFM, “Optimierung und Lösung von technischen Abläufen durch Sensorik, Kommunikations- und Steuerungssysteme; Schulungsunterlagen Drehgeber; V1.5,” (2010) www.ifm-electronic.com.
  8. Hengstler, “Wind energy; Drehgeber für die optimale Ausrichtung,” (2009) www.hengstler.com.
  9. Hengstler, “Sicher hoch hinaus; Drehgeber-Einsatz Windenergieanlagen,” Konstruktionspraxis 6, 46–48 (2004).
  10. Heidenhain, “Sicherheitsbezogene Positionsmesssysteme,” (2010) www.heidenhain.de.
  11. Pepperl+Fuchs, “Mit dem richtigen Dreh zur funktionalen Sicherheit; Safety-Drehgeber von Pepperl+Fuchs,” (2011) www.pepperl-fuchs.com.
  12. Megatron, “Gesamtprogramm Winkelsensoren,” (2011) www.megatron.de.
  13. Pepperl+Fuchs, “Übersicht Drehgeber,” (2011) www.pepperl-fuchs.com.
  14. Temicon, “Your access to the microscale,” (2011) www.temicon.de.
  15. Renishaw, “The accuracy of angle encoders,” (2011) www.renishaw.com.
  16. J. Seitz, “Kontrastprogramm im Drehgebermarkt: Absolut Highend oder inkremental günstig,” IEE 49, 24–25 (2004).
  17. Heidenhain, “Drehgeber,” (2010) www.heidenhain.de.
  18. Heidenhain, “Optimierte Abtastung bei absoluten Drehgebern; technische Information,” (2006) www.heidenhain.de.
  19. K. Fujita, T. Nakayama, and Y. Matsuzoe, “Recent encoder technology,” Fuji Elect. J. 46, 57–62 (1999).
  20. V. Mayer, “Untersuchungen zu optischen Drehgebern mit mikrostrukturierten Maßverkörperungen aus Kunststoff,” Institut für Zeitmesstechnik, Fein- und Mikrotechnik, Universität Stuttgart (2009).
  21. Mediatechnics, “CD & DVD Glass Mastering,” (2011) www.mediatechnics.com.
  22. M. Otsuka, “HD DVD disc manufacturing process development,” in International Symposium on Optical Memory and Optical Data Storage, OSA Technical Digest Series (Optical Society America, 2005), pp. 1–2.
  23. T. Botzelmann, V. Mayer, D. Warkentin, and H. Kück, “Injection moulding of micro patterned polymer discs for optical rotary encoders,” in Proceedings of the 5th International Conference on Multi-Material Micro Manufacture 4M (2009).
  24. F. Nikolajeff, S. Jacobsson, S. Hård, A. Billman, L. Lundbladh, and C. Lindell, “Replication of continuous-relief diffractive optical elements by conventional compact disc injection-molding techniques,” Appl. Opt. 36, 4655–4659 (1997). [CrossRef] [PubMed]
  25. V. Mayer, T. Botzelmann, K.-P. Fritz, J. Seybold, and H. Kück, “A new concept for an absolutely encoded angular resolver,” in Proceedings of the 3th International Conference on Multi-Material Micro Manufacture 4M (2007).
  26. W. S. Beich, L. Fendrock, C. Smock, and N. Turner, “Recent trends in precision polymer optics fabrication,” in Optical Fabrication and Testing (Optical Society of America, 2008).
  27. H. E. Lai and P. J. Wang, “Study of process parameters on optical qualities for injection-molded plastic lenses,” Appl. Opt. 47, 2017–2027 (2008). [CrossRef] [PubMed]
  28. J. Seybold, V. Mayer, H. Kück, D. Hopp, C. Pruss, and W. Osten, “Hochauflösender optischer Drehgeber mit MID-Optikmodul,” presented at 6. Paderborner Workshop “Entwurf mechatronischer Systeme,” Paderborn, Germany, 2009.
  29. D. Hopp, C. Pruss, W. Osten, J. Seybold, V. Mayer, and H. Kück, “Optical incremental rotary encoder in low cost design,” presented at Sensor & Test Opto., Nürnberg, Germany, 2009.
  30. D. Hopp, C. Pruss, W. Osten, J. Seybold, V. Mayer, and H. Kück, “Optischer inkrementaler Drehgeber in Low-Cost-Bauweise,” Tech. Mess. 77, 358–363 (2010). [CrossRef]
  31. D. Hopp, C. Pruss, W. Osten, J. Seybold, V. Mayer, and H. Kück, “Hochauflösender optischer Drehgeber in Low-Cost-Bauweise,” DGaO, Esslingen, Germany, 2008.
  32. V. Mayer, M. Schneider, J. Seybold, T. Botzelmann, and H. Kück, “New high resolution optical incremental rotary encoder,” in Smart Systems Integration (VDE Verlag GmbH, 2008).
  33. V. Mayer, M. Schneider, J. Seybold, T. Botzelmann, and H. Kück, “Innovativer hochauflösender inkrementeller optischer Drehgeber,” in VDI/VDE ITG Fachtagung Sensoren und Messsysteme, Ludwigsburg (VDI Verlag GmbH, 2008).
  34. S. Held, “Die Referenzfahrt entscheidet; Absolute und inkrementale Drehgeber im Vergleich,” KEM , 134–136 (2004).
  35. LaserComponents, “Positionsmessung: PSD oder CCD?” (2010) http://www.lasercomponents.com.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited