OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 26 — Sep. 10, 2011
  • pp: 5185–5191

Blood oxygenation measurements by multichannel reflectometry on the venous and arterial structures of the retina

Valentina Vucea, Pierre-Jean Bernard, Patrick Sauvageau, and Vasile Diaconu  »View Author Affiliations


Applied Optics, Vol. 50, Issue 26, pp. 5185-5191 (2011)
http://dx.doi.org/10.1364/AO.50.005185


View Full Text Article

Enhanced HTML    Acrobat PDF (915 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The aim of the present study was to propose a model and a method to derive the oxyhemoglobin blood content in the retinal veins and arteries by full spectrum reflectometry measurements in the spectral zone from 430 to 680 nm . We proposed a mathematical equation expressed as a linear combination of two terms S OHb ( λ ) and S Hb ( λ ) representing the normalized spectral absorption functions of the hemoglobin and the oxyhemoglobin, one term λ n representing the ocular media absorption with scattering, and a family of multi-Gaussian functions, which usefully compensate for the noncompatibility of the model and the experimental data in the red spectral zone. The present paper suggests that the spectral reflection function in the area from 520 to 580 nm is optimal in calculating the oxyhemoglobin concentration of the blood contained in the endothelial structures of retinal vessels. The model calculation needs a function ( 1 / λ ) n that corrects for the ocular media absorption and light scattering on the vessels’ structures. For the spectral area of lights with wavelength larger than 580 nm , the reflected light represents mainly the light scattering on the red blood cells.

© 2011 Optical Society of America

OCIS Codes
(170.1460) Medical optics and biotechnology : Blood gas monitoring
(170.3890) Medical optics and biotechnology : Medical optics instrumentation

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: July 6, 2011
Revised Manuscript: August 8, 2011
Manuscript Accepted: August 8, 2011
Published: September 9, 2011

Virtual Issues
Vol. 6, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Valentina Vucea, Pierre-Jean Bernard, Patrick Sauvageau, and Vasile Diaconu, "Blood oxygenation measurements by multichannel reflectometry on the venous and arterial structures of the retina," Appl. Opt. 50, 5185-5191 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-26-5185


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. E. Riva and G. T. Feke, “Laser Doppler velocimetry in the measurement of retinal blood flow,” in The Biomedical Laser: Technology and Clinical Applications, L.Golman, ed. (Springer, 1981), pp. 135–161.11.
  2. G. T. Feke and C. E. Riva, “Laser Doppler measurements of blood velocity in human retina vessels,” J. Opt. Soc. Am. 68, 526–531 (1978). [CrossRef] [PubMed]
  3. A. Harris, R. B. Dinn, L. Kagemann, and E. Rechtman, “A review of methods for human retinal oximetry,” Ophthalmic Surg. Lasers Imaging 34, 152–164 (2003). [PubMed]
  4. R. N. Pittman and B. R. Duling, “A new method for the measurement of percent oxyhemoglobin,” J. Appl. Physiol. 38, 315–320 (1975). [PubMed]
  5. J. M. Beach, J. S. Tiedeman, M. F. Hopkins, and Y. S. Sabharwal, “Multispectral fundus imaging for early detection of diabetic retinopathy,” Proc. SPIE 3603, 114–121 (1999). [CrossRef]
  6. J. M. Beach, K. J. Schwentzer, S. Srinivas, D. Kim, and J. S. Tiedeman, “Oximetry of retinal vessel by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol. 86, 748–758 (1999). [PubMed]
  7. H. S. Hardarson, A. Harris, R. A. Karlsson, G. H. Halldorsson, L. Kagemann, E. Rechtman, G. M. Zoega, T. Eysteinsson, J. A. Benediktsson, A. Thorsteinsson, P. K. Jensen, J. Beach, and E. Stefánsson, “Automatic retinal oximetry” Invest. Ophthalmol. Visual Sci. 47, 5011–5016 (2006). [CrossRef]
  8. F. C. Delori, “Noninvasive technique for oxymetry of blood in retinal vessels,” Appl. Opt. 27, 1113–1125 (1988). [CrossRef] [PubMed]
  9. D. Schweitzer, E. Thamm, M. Hammer, and J. Kraft, “A new method for the measurement of oxygen saturation at the human ocular fundus,” Int. Ophthalmol. 23, 347–353 (2001). [CrossRef]
  10. D. Schweitzer, M. Hammer, J. Kraft, E. Thamm, E. Königsdörffer, and J. Strobel, “In vivo measurement of the oxygen saturation of retinal vessels in healthy volunteers,” IEEE Trans. Biomed. Eng. 46, 1454–1465 (1999). [CrossRef] [PubMed]
  11. D. Schweitzer, L. Leistritz, M. Hammer, M. Scibor, U. Bartsch, and J. Strobel, “Calibration-free measurement of the oxygen saturation in retinal vessels of men,” Proc. SPIE 2393, 210–218 (1995). [CrossRef]
  12. V. Diaconu, “Multichannel spectroreflectometry: a noninvasive method for assessment of on-line hemoglobin derivatives,” Appl. Opt. 48, D52–D61 (2009). [CrossRef] [PubMed]
  13. M. Hammer, S. Leistritz, L. Leistritz, and D. Schweitzer, “Light paths in retinal vessel oxymetry,” IEEE Trans. Biomed. Eng. 48, 592–598 (2001). [CrossRef] [PubMed]
  14. G. Birol, S. Wang, E. Budzynski, N. D. Wangsa-Wirawan, and R. A. Linsenmeier, “Oxygen distribution and consumption in the macaque retina,” Am. J Physiol. 293, 1696–1704 (2007).
  15. C. E. Riva, J. E. Grunwald, and B. L. Petrig, “Reactivity of the human retinal circulation to darkness: a laser Doppler velocimetry study,” Invest. Ophthalmol. Visual Sci. 24, 737–740 (1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited