OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 26 — Sep. 10, 2011
  • pp: 5192–5199

Ray-tracing method for isotropic inhomogeneous refractive-index media from arbitrary discrete input

Yohei Nishidate, Takashi Nagata, Shin-ya Morita, and Yutaka Yamagata  »View Author Affiliations


Applied Optics, Vol. 50, Issue 26, pp. 5192-5199 (2011)
http://dx.doi.org/10.1364/AO.50.005192


View Full Text Article

Enhanced HTML    Acrobat PDF (684 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed a ray-tracing simulation procedure for optically isotropic gradient refractive-index media. The procedure can take discrete points of arbitrary distribution for the definition of refractive-index distributions and lens surfaces. It is useful for simulating ray trajectories in real lens systems. The procedure is applied to a ray-tracing simulation of the Luneburg lens and a radial gradient optical fiber. The simulation results are compared with the analytical solutions, and it is shown that they are in precise agreement.

© 2011 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(080.2710) Geometric optics : Inhomogeneous optical media
(220.2740) Optical design and fabrication : Geometric optical design
(080.1753) Geometric optics : Computation methods
(080.5692) Geometric optics : Ray trajectories in inhomogeneous media

History
Original Manuscript: April 29, 2011
Revised Manuscript: June 29, 2011
Manuscript Accepted: June 30, 2011
Published: September 9, 2011

Citation
Yohei Nishidate, Takashi Nagata, Shin-ya Morita, and Yutaka Yamagata, "Ray-tracing method for isotropic inhomogeneous refractive-index media from arbitrary discrete input," Appl. Opt. 50, 5192-5199 (2011)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-26-5192


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. W. Sweeney and C. M. Vest, “Reconstruction of three-dimensional refractive index fields from multidirectional interferometric data,” Appl. Opt. 12, 2649–2554 (1973). [CrossRef] [PubMed]
  2. M. H. Maleki, A. J. Devaney, and A. Schatzberg, “Tomographic reconstruction from optical scattered intensities,” J. Opt. Soc. Am. A 9, 1356–1363 (1992). [CrossRef]
  3. H. Suhara, “Interferometric measurement of the refractive-index distribution in plastic lenses by use of computed tomography,” Appl. Opt. 41, 5317–5325 (2002). [CrossRef] [PubMed]
  4. W. Zhao, Y. Chen, L. Shen, and A. Y. Yi, “Investigation of the refractive index distribution in precision compression glass molding by use of 3D tomography,” Meas. Sci. Technol. 20, 055109 (2009). [CrossRef]
  5. W. Zhao, Y. Chen, L. Shen, and A. Y. Yi, “Refractive index and dispersion variation in precision optical glass molding by computed tomography,” Appl. Opt. 48, 3588–3595 (2009). [CrossRef] [PubMed]
  6. S. Cha and C. M. Vest, “Interferometry and reconstruction of strongly refracting asymmetric-refractive-index fields,” Opt. Lett. 4, 311–313 (1979). [CrossRef] [PubMed]
  7. S. Cha and C. M. Vest, “Tomographic reconstruction of strongly refracting fields and its application to interferometric measurement of boundary layers,” Appl. Opt. 20, 2787–2794(1981). [CrossRef] [PubMed]
  8. E. W. Marchand, Gradient Index Optics (Academic, 1978).
  9. M. Born and E. Wolf, Principles of Optics I, 7th ed. (Cambridge Univ. Press, 1999).
  10. A. Sharma, D. V. Kumar, and A. K. Ghatak, “Tracing rays through graded-index media: a new method,” Appl. Opt. 21, 984–987 (1982). [CrossRef] [PubMed]
  11. A. Sharma, “Computing optical path length in gradient index media: a fast and accurate method,” Appl. Opt. 24, 4367–4370(1985). [CrossRef] [PubMed]
  12. A. Sharma and A. K. Ghatak, “Ray tracing in gradient-index lenses: computation of ray-surface intersection,” Appl. Opt. 25, 3409–3412 (1986). [CrossRef] [PubMed]
  13. H. Nishi, H. Ichikawa, M. Toyama, and I. Kitano, “Gradient-index objective lens for the compact disk system,” Appl. Opt. 25, 3340–3344 (1986). [CrossRef] [PubMed]
  14. D. Siedlecki, H. Kasprzak, and B. K. Pierscionek, “Schematic eye with a gradient-index lens and aspheric surfaces,” Opt. Lett. 29, 1197–1199 (2004). [CrossRef] [PubMed]
  15. Z. Kam, B. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Computational adaptive optics for live three dimensional biological imaging,” Proc. Natl. Acad. Sci. USA 98, 3790–3795 (2001). [CrossRef] [PubMed]
  16. C. C. Handapangoda and M. Premaratne, “An approximate numerical technique for characterizing optical pulse propagation in inhomogeneous biological tissue,” J. Biomed. Biotechnol. 2008, 784354 (2008). [CrossRef] [PubMed]
  17. J. Arrue, F. Jiménez, G. Aldabaldetreku, G. Durana, J. Zubia, M. Lomer, and J. Mateo, “Analysis of the use of tapered graded-index polymer optical fibers for refractive-index sensors,” Opt. Express 16, 16616–16631 (2008). [CrossRef] [PubMed]
  18. I. Ihrke, G. Ziegler, A. Tevs, C. Theobalt, M. Magnor, and H.-P. Seidel, “Eikonal rendering: efficient light transport in refractive objects,” ACM Trans. Graph. 26(3), 59 (2007). [CrossRef]
  19. T. Sakamoto, “Ray trace algorithms for GRIN media,” Appl. Opt. 26, 2943–2946 (1987). [CrossRef] [PubMed]
  20. B. D. Stone and G. W. Forbes, “Optimal interpolants for Runge–Kutta ray tracing in inhomogeneous media,” J. Opt. Soc. Am. A 7, 248–254 (1990). [CrossRef]
  21. J. Puchalski, “Numerical determination of ray tracing: a new method,” Appl. Opt. 31, 6789–6799 (1992). [CrossRef] [PubMed]
  22. W. C. Carpenter and P. A. T. Gill, “Automated solutions of time-dependent problems,” in The Mathematics of Finite Elements and Applications II, J.Whiteman, ed. (Academic, 1973), pp. 495–506.
  23. B. Richerzhagen, “Finite element ray tracing: a new method for ray tracing in gradient-index media,” Appl. Opt. 35, 6186–6189 (1996). [CrossRef] [PubMed]
  24. S. Deng, X. Li, Z. Cen, and S. Jian, “Simulation of the inhomogeneous medium with a self-adapting grid,” Appl. Opt. 46, 3102–3106 (2007). [CrossRef] [PubMed]
  25. D. A. Atchison and G. Smith, “Continuous gradient index and shell models of human lens,” Vis. Res. 35, 2529–2538(1995). [CrossRef] [PubMed]
  26. S. Morita, Y. Nishidate, T. Nagata, Y. Yamagata, and C. Teodosiu, “Ray-tracing simulation method using piecewise quadratic interpolant for aspheric optical systems,” Appl. Opt. 49, 3442–3451 (2010). [CrossRef] [PubMed]
  27. T. Nagata, “Simple local interpolation of surfaces using normal vectors,” Comput. Aided Geom. Des. 22, 327–347 (2005). [CrossRef]
  28. R. Courant, K. Friedrichs, and H. Lewy, “On the partial difference equations of mathematical physics,” IBM J. Res. Dev. 11, 215–234 (1967). [CrossRef]
  29. T. Belytschko, Y. Y. Lu, and L. Gu, “Element-free Galerkin methods,” Int. J. Numer. Meth. Eng. 37, 229–256 (1994). [CrossRef]
  30. S. N. Atluri and T. Zhu, “A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics,” Comput. Mech. 22, 117–127 (1998). [CrossRef]
  31. X. Jin, G. Li, and N. R. Aluru, “On the equivalence between least-squares and kernel approximations in meshless methods,” Comput. Model. Eng. Sci. 2, 447–462 (2001). [CrossRef]
  32. F. T. Wong and W. Kanok-Nukulchai, “Kriging-based finite element method: element-by-element Kriging interpolation,” Civil Eng. Dimens. 11, 15–22 (2009).
  33. E. Fehlberg, “Low-order classical Runge–Kutta formulas with step size control and their application to some heat transfer problems,” Technical report 315 (NASA, 1969).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited