OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 50, Iss. 27 — Sep. 20, 2011
  • pp: 5228–5234

Effect of different epitaxial structures on GaAs photoemission

Jijun Zou, Yijun Zhang, Wenjuan Deng, Jieyun Jin, and Benkang Chang  »View Author Affiliations

Applied Optics, Vol. 50, Issue 27, pp. 5228-5234 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (623 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The quantum efficiency equations of two different structure reflection-mode GaAs photocathodes with back interface recombination velocity have been solved from the diffusion equations. One structure consists of GaAs substrate and an epitaxial GaAs active layer (GaAs-GaAs) and another structure consists of GaAs substrate, an epitaxial AlGaAs buffer layer, and a GaAs active layer (AlGaAs-GaAs). The experimental results show that the quantum efficiency of long-wavelength photons and the integral sensitivities for GaAs-GaAs cathodes both increase with the increase in the active layer thickness, which is due to the increase of electron diffusion length. The quantum efficiency of long-wavelength photons and the integral sensitivity of AlGaAs-GaAs cathodes are greater than those of GaAs-GaAs cathodes with an identical active layer thickness, which is attributed to the AlGaAs buffer layer. The buffer layer can reflect electrons and improve the quality of the GaAs active layer. Through the theoretical simulation, we found the active layer thickness for AlGaAs-GaAs cathodes has an optimum value at which the cathodes achieve the maximum sensitivity.

© 2011 Optical Society of America

OCIS Codes
(160.6000) Materials : Semiconductor materials
(250.0040) Optoelectronics : Detectors

ToC Category:

Original Manuscript: February 22, 2011
Revised Manuscript: July 17, 2011
Manuscript Accepted: August 5, 2011
Published: September 14, 2011

Jijun Zou, Yijun Zhang, Wenjuan Deng, Jieyun Jin, and Benkang Chang, "Effect of different epitaxial structures on GaAs photoemission," Appl. Opt. 50, 5228-5234 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007). [CrossRef]
  2. J. P. Estrera, E. J. Bender, A. Giordana, J. W. Glesener, M. J. Iosue, P. P. Lin, and T. W. Sinor, “Long lifetime generation IV image intensifiers with unfilmed microchannel plate,” Proc. SPIE 4128, 46–53 (2000). [CrossRef]
  3. H.-J. Drouhin, C. Hermann, and G. Lampel, “Photoemission from activated gallium arsenide. I. very-high-resolution energy distribution curves,” Phys. Rev. B 31, 3859–3871 (1985). [CrossRef]
  4. Z. Liu, Y. Sun, S. Peterson, and P. Pianetta, “Photoemission study of Cs-NF3 activated GaAs (100) negative electron affinity photocathodes,” Appl. Phys. Lett. 92, 241107 (2008). [CrossRef]
  5. J. J. Zou, Y. J. Zhang, Z. Yang, and B. K. Chang, “Degradation model of GaAs vacuum electron sources,” Acta Phys. Sin. 60, 017902 (2011).
  6. T. Maruyama, A. Brachmann, J. E. Clendenin, T. Desikan, E. L. Garwin, R. E. Kirby, D.-A. Luh, J. Turner, and R. Prepost, “A very high charge, high polarization gradient-doped strained GaAs photocathode,” Nucl. Instrum. Methods Phys. Res. A 492, 199–211 (2002). [CrossRef]
  7. W. E. Spicer, “Photoemissive, photoconductive, and absorption studies of alkali-antimony compounds,” Phys. Rev. 112, 114–122 (1958). [CrossRef]
  8. W. E. Spicer and A. Herrera-Gómez, “Modern theory and application of photocathodes,” Proc. SPIE 2022, 18–33 (1993). [CrossRef]
  9. G. A. Antypas, L. W. James, and J. J. Uebbing, “Operation of III–V semiconductor photocathodes in the semitransparent mode,” J. Appl. Phys. 41, 2888–2894 (1970). [CrossRef]
  10. Y. Z. Liu, J. L. Moll, and W. E. Spicer, “Quantum yield of GaAs semitransparent photocathodes,” Appl. Phys. Lett. 17, 60–62(1970). [CrossRef]
  11. Y. Z. Liu, C. D. Hollish, and W. W. Stein, “LPE GaAs/(Ga, Al)As/GaAs transmission photocathodes and a simplified formula for transmission quantum yield,” J. Appl. Phys. 44, 5619–5621 (1973). [CrossRef]
  12. C. Y. Su, W. E. Spicer, and I. Lindau, “Photoelectron spectroscopic determination of the structure of (Cs, O) activated GaAs (110) surface,” J. Appl. Phys. 54, 1413–1422 (1983). [CrossRef]
  13. C. Y. Su, I. Lindau, and W. E. Spicer, “Photoemission studies of the oxidation of Cs identification of the multiple structures of oxygen species,” Chem. Phys. Lett. 87, 523–527 (1982). [CrossRef]
  14. B. K. Chang, X. Q. Du, L. Liu, Z. Y. Zong, R. G. Fu, and Y. S. Qian, “The automatic recording system of dynamic spectral response and its applications,” Proc. SPIE 5209, 209–218(2003). [CrossRef]
  15. J. J. Zou, B. K. Chang, Y. J. Zhang, and Z. Yang, “Variation of spectral response from Cs-covered GaAs and band features contained within the spectral response,” Appl. Opt. 49, 2561–2565 (2010). [CrossRef]
  16. J. J. Zou, L. Feng, G. Y. Lin, Y. T. Rao, Z. Yang, Y. S. Qian, and B. K. Chang, “On-line measurement system of GaAs photocathodes and its application,” Proc. SPIE 6782, 67823D (2007). [CrossRef]
  17. F. Proix, A. Akremi, and Z. T. Zhong, “Effects of vacuum annealing on the electronic properties of cleaved GaAs,” J. Phys. C 16, 5449–5463 (1983). [CrossRef]
  18. Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010). [CrossRef]
  19. S. Moré, S. Tanaka, S. Tanaka, Y. Fujii, and M. Kamada, “Interaction of Cs and O with GaAs(100) at the overlayer—substrate interface during negative electron affinity type activations,” Surf. Sci. 527, 41–50 (2003). [CrossRef]
  20. A. A. Turnbull and G. B. Evans, “Photoemission from GaAs-Cs-O,” J. Phys. D: Appl. Phys. 1, 155–160 (1968). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited